50 research outputs found

    Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg Lāˆ’1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (Ī¦PSII) at the growth light (GL, 600 Ī¼mol photons māˆ’2 sāˆ’1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species

    Leaf age-dependent effects of foliar-sprayed CuZn nanoparticles on photosynthetic efficiency and ROS generation in <i>Arabidopsis thaliana</i>

    Get PDF
    Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L&minus;1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (&Phi;PS&Iota;&Iota;) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased &Phi;PS&Iota;&Iota;, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested

    Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure

    No full text
    Five-day exposure of clary sage (Salvia sclarea L.) to 100 &mu;M cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (&Phi;PS&Iota;&Iota;). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (&Phi;NO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of &ldquo;adaptive response&rdquo; and &ldquo;toxicity&rdquo;, respectively

    Double Puzzle: Morphogenesis of the Bi-Layered Leaf Adaxial Epidermis of Magnolia grandiflora

    No full text
    Anticlinal ordinary epidermal cell wall waviness is a widespread feature found in the leaves of a variety of land plant species. However, it has not yet been encountered in leaves with multiple epidermides. Surprisingly, in Magnolia grandiflora leaves, ordinary epidermal cells in both layers of the bi-layered adaxial epidermis exhibit wavy anticlinal contour. During the development of the above cells, cortical microtubules are organized in anticlinally oriented bundles under the anticlinal walls, and radial arrays extending from the bundles at the edges of anticlinal and external periclinal walls, under the external periclinal walls. This microtubule pattern is followed by cell wall reinforcement with local thickenings, the cellulose microfibrils of which are parallel to the underlying microtubules. This specialized microtubule organization and concomitant cell wall reinforcement is initiated in the external epidermal layer, while hypodermis follows. The waviness pattern of each epidermal layer is unrelated to that of the other. The above findings are discussed in terms of morphogenetic mechanism induction and any implications in the functional significance of ordinary epidermal cell waviness

    Structural Evidence of Programmed Cell Death Induction by Tungsten in Root Tip Cells of Pisum sativum

    No full text
    Previous studies have shown that excess tungsten (W), a rare heavy metal, is toxic to plant cells and may induce a kind of programmed cell death (PCD). In the present study we used transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) to investigate the subcellular malformations caused by W, supplied as 200 mg/L sodium tungstate (Na2WO4) for 12 or 24 h, in root tip cells of Pisum sativum (pea), The objective was to provide additional evidence in support of the notion of PCD induction and the presumed involvement of reactive oxygen species (ROS). It is shown ultrastructurally that W inhibited seedling growth, deranged root tip morphology, induced the collapse and deformation of vacuoles, degraded Golgi bodies, increased the incidence of multivesicular and multilamellar bodies, and caused the detachment of the plasma membrane from the cell walls. Plastids and mitochondria were also affected. By TEM, the endoplasmic reticulum appeared in aggregations of straight, curved or concentric cisternae, frequently enclosing cytoplasmic organelles, while by CLSM it appeared in bright ring-like aggregations and was severely disrupted in mitotic cells. However, no evidence of ROS increase was obtained. Overall, these findings support the view of a W-induced vacuolar destructive PCD without ROS enhancement

    Cortical microtubule orientation in Arabidopsis thaliana root meristematic zone depends on cell division and requires severing by katanin

    No full text
    Abstract Background Transverse cortical microtubule orientation, critical for anisotropic cell expansion, is established in the meristematic root zone. Intending to elucidate the possible prerequisites for this establishment and factors that are involved, microtubule organization was studied in roots of Arabidopsis thaliana, wild-type and the p60-katanin mutants fra2, ktn1-2 and lue1. Transverse cortical microtubule orientation in the meristematic root zone has proven to persist under several regimes inhibiting root elongation. This persistence was attributed to the constant moderate elongation of meristematic cells, prior to mitotic division. Therefore, A. thaliana wild-type seedlings were treated with aphidicolin, in order to prevent mitosis and inhibit premitotic cell elongation. Results In roots treated with aphidicolin for 12Ā h, cell divisions still occurred and microtubules were transverse. After 24 and 48Ā h of treatment, meristematic cell divisions and the prerequisite elongation ceased, while microtubule orientation became random. In meristematic cells of the p60-katanin mutants, apart from a general transverse microtubule pattern, cortical microtubules with random orientation were observed, also converging at several cortical sites, in contrast to the uniform transverse pattern of wild-type cells. Conclusion Taken together, these observations reveal that transverse cortical microtubule orientation in the meristematic zone of A. thaliana root is cell division-dependent and requires severing by katanin

    The Enzymatic and Non-Enzymatic Antioxidant System Response of the Seagrass <i>Cymodocea nodosa</i> to Bisphenol-A Toxicity

    No full text
    The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 Ī¼g Lāˆ’1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 Ī¼g Lāˆ’1 and that the protein content meets the requirements to be considered as a possible early warning ā€œbiomarkerā€ for C. nodosa against BPA toxicity

    Cytokinesis in <i>fra2 Arabidopsis thaliana</i> p60-Katanin Mutant: Defects in Cell Plate/Daughter Wall Formation

    No full text
    Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation

    Cytokinesis in fra2 Arabidopsis thaliana p60-Katanin Mutant: Defects in Cell Plate/Daughter Wall Formation

    No full text
    Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation
    corecore