36 research outputs found

    Wettability and capillary behavior of fibrous gas diffusion media for polymer electrolyte membrane fuel cells

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jpowsour.2009.04.052 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The relationship of capillary pressure to liquid saturation for the water-air fluid pair in two different types of gas diffusion media (GDM) used in polymer electrolyte membrane fuel cell (PEMFC) electrodes is elucidated. It is experimentally demonstrated that GDM samples with and without treatment with poly(tetrafluoroethylene) (PTFE) ubiquitously display permanent capillary pressure hysteresis. Water does not imbibe spontaneously into a dry GDM, neither is it ejected spontaneously from a water-saturated GDM. Rather, positive displacement pressure is required to force both water and air into GDMs, whereas the main effect of adding PTFE is to increase the amount of work required for forcing water into the GDM. and to decrease the work required for water removal. Irrespective of PTFE content, the GDM samples tested are generally shown to behave as materials of intermediate (neutral) wettability. The US Bureau of Mines (USBM) wettability index nevertheless shows that water is the preferentially non-wetting phase in PTFE-treated GDMs and the preferentially wetting phase in untreated GDMs. Water-air capillary pressure curves are found to depend on sample thickness, clearly demonstrating that finite size effects are important. Finally, compression of the GDM is found to increase the capillary pressures for water injection and decrease the capillary pressures required for water withdrawal. These results should aid the design of GDMs with improved water management properties and the modeling of PEMFC electrodes in general. (C) 2009 Elsevier B.V. All rights reserved.Natural Science and Engineering Research Council of Canada (NSERC

    On the role of the microporous layer in PEMFC operation

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.elecom.2008.12.053 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The condition of liquid water breakthrough at the cathode of polymer electrolyte fuel cells (PEMFC) is studied experimentally and data on corresponding water saturation and capillary pressure are provided for gas diffusion layers (GDL) with and without a microporous layer (MPL). The data demonstrate that the GDL saturation at water breakthrough is drastically reduced from ca. 25% to ca. 5% in the presence of MPL This observation is consistent with considerations of invasion percolation in finite-size lattices and suggests an explanation for the role of MPL in improving PEMFC performance at high current densities

    Impact of Liquid Water on Reactant Mass Transfer in PEM Fuel Cell Electrodes

    Get PDF
    Published by Electrochemical Society. Final version available at: http://dx.doi.org/10.1149/1.3291977The breakthrough conditions (capillary pressure and liquid water saturation) in a fibrous gas diffusion medium (GDM) used in polymer electrolyte membrane (PEM) fuel cell electrodes have been studied experimentally by two independent techniques and numerically by pore network modeling. Experiments show that treatment of the GDMs with a hydrophobic polymer coating reduces the water saturation at a breakthrough by 50%. Invasion percolation modeling is employed to simulate the breakthrough process and to determine mass-transfer rates through the partially saturated network. This model shows that the water saturation at breakthrough is drastically reduced when a microporous layer (MPL) is incorporated into the GDM, agreeing with experiments. However, the simulations yield limiting currents significantly higher than those observed in practice whether or not an MPL is present. Further calculations to include the contribution of condensation to water saturation within the GDM also result in unrealistically high limiting currents and suggest that mass-transfer resistance in the catalyst layer that is not included in the model plays an important role. If condensation is the principal mode for water accumulation within the GDM, simulations show that the MPL has only a small impact on liquid water distribution and does not improve performance, contrary to expectation.Natural Science and Engineering Research Council of Canada (NSERC

    Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jpowsour.2007.04.059 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A pore network model of the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions. Geometric parameters of the pore network model are calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials and the model is subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, the relative permeability of water and gas and the effective gas diffusivity are computed as functions of water saturation using resistor-network theory. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. Alternative relationships are suggested that better match the pore network model results. The pore network model is also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but it may become a significant source of concentration polarization as the GDL becomes increasingly saturated with water

    Direct measurement of the capillary pressure characteristics of water-air-gas diffusion layer systems for PEM fuel cells

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.elecom.2008.08.008 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management Strategies

    On the use of physical boundary conditions for two-phase flow simulations: Integration of control feedback

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.compchemeng.2018.08.012 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The sensitivity of two-phase flow simulations using the Euler–Euler model on the inlet boundary conditions (BCs) is studied. Specifically, the physical relevance of Dirichlet uniform inlet velocity BCs is studied which are widely used due their simplicity and the lack of a priori knowledge of the slip velocity between the phases. It is found that flow patterns obtained with the more physically realistic uniform inlet pressure BCs are radically different from the results obtained with Dirichlet inlet velocity BCs, refuting the argument frequently put forward that Dirichlet uniform inlet velocity BCs can be interchangeably used because the terminal slip velocity is reached after a short entrance region. A comparison with experimental data is performed to assess the relevance of the flows obtained numerically. Additionally, a multivariable feedback control method is demonstrated to be ideal for enforcing desired flow rates for simulations using pressure BCs.Natural Sciences and Engineering Research Council of Canad

    Towards Budget Comparative Analysis: The Need for Fiscal Code Lists as Linked Data

    Get PDF
    ABSTRACT Code lists are a key part of budget datasets as they serve for the coding of fiscal concepts within them. However, the great diversity of classifications across countries and concepts does not allow to presume upon their actual value, as dimension properties. In this paper we discuss the need for creating code lists Linked Data for the classifications used in fiscal datasets, in three basic steps. First, code lists have to be extracted from fiscal datasets, especially if there are no relevant metadata in the budget description, which could easily identify them. Next, code lists from different datasets or sources have to be represented in the same way, with SKOS vocabulary, thus they can be linked with each other. Finally, linking of similar code lists will also allow the linking of the containing datasets, increasing their data analysis and knowledge extraction possibilities

    3D imaging and flow characterization of the pore space of carbonate core samples

    No full text
    Carbonate rocks are inherently heterogeneous having been laid down in a range of depositional environments and having undergone significant diagenesis. They are particularly difficult to characterise as the pore sizes can vary over orders of magnitudes and connectivity of pores of different scales can impact greatly on flow properties. For example, separate vuggy porosity in an underlying matrix pore system can increase the porosity, but not the permeability and lead to large residual oil saturations due to trapping in vugs. A touching vug network can have a dramatic effect on permeability and lead to higher recoveries. In this paper we image a range of carbonate core material; from model carbonate cores to core material from outcrops and reservoirs via 3D via micro-CT. Image-based calculations of porosity, MICP and permeability on 3D images of the carbonate systems are directly compared to experimental data from the same or sister core material and give good agreement. The carbonate systems studied include samples with well connected macroporous systems and other where the macroporosity is poorly connected. Simulation of permeability on these systems and direct analysis of local flow properties within the system allows one to directly illustrate the important role of the connectivity of macropores on flow properties. Pore network models generated from the images illustrate the varied topology obtained in different carbonate samples and show a dramatic difference when compared to clastic samples. Many carbonate samples can include a significant proportion of microporosity (pores of 2 microns or less in extent) which are not directly accessible via current micro-CT capabilities. We discuss how one can map the structure and the topology of microporous regions crucial in studies of flow, production and recovery in carbonates. A hybrid numerical scheme is developed to measure the contribution of microporosity to the overall core permeability. Overall these results show the important role of identifying the connectivity of the pore sizes in dictating the single phase flow properties. Implications to two phase relative permeability and recovery are briefly discussed

    In-plane and through-plane gas permeability of carbon fiber electrode backing layers

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jpowsour.2006.06.096 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The absolute gas permeability of several common gas diffusion layer (GDL) materials for polymer electrolyte membrane fuel cells was measured. Measurements were made in three perpendicular directions to investigate anisotropic properties. Most materials were found to display higher in-plane permeability than through-plane permeability. The permeability in the two perpendicular in-plane directions was found to display significant anisotropy. Materials with the most highly aligned fibers showed the highest anisotropy and the permeability could differ by as much as a factor of 2. In-plane permeability was also measured as the GDL was compressed to different thicknesses. Typically, compression of a sample to half its initial thickness resulted in a decrease in permeability by an order of magnitude. Since the change in GDL thickness during compression can be converted to porosity, the relationship between measured permeability and porosity was compared to various models available in the literature, one of which allows the estimation of anisotropic tortuosity. The effect of inertia on fluid flow was also determined and found to vary inversely with permeability, in agreement with available correlations. The results of this work will be useful for 3D modeling studies where knowledge of permeability and effective diffusivity tensors is required.Natural Science and Engineering Research Council of Canada (NSERC

    On the use of programmable metasurfaces in vehicular networks

    Get PDF
    Metasurface-based intelligent reflecting surfaces constitute a revolutionary technology which can serve the purpose of alleviating the blockage problem in mmwave communication systems. In this work, we consider the hypersurface paradigm complementing the software defined metasurface with an embedded controller network in order to facilitate the dissemination of reconfiguration directives to unit cell controllers. For the first time, we describe the methodology with which to characterize the workload within this embedded network in the case of the metasurface tracking multiple users and we use a vehicular communications setting to showcase the methodology. Beyond that, we demonstrate use cases of the workload analysis. We show how the workload characterization can guide the design of information dissemination schemes achieving significant reduction in the network traffic. Moreover, we show how the workload, as a measure of the consumed power, can be used in designing energy efficient communication protocols through a multi-objective optimization problem maximizing the achieved utilization while at the same time minimizing the workload incurred.Peer ReviewedPostprint (author's final draft
    corecore