9 research outputs found

    Genetic Analysis for Relationships between some Native Sour Cherry (Prunus cerasus l.) Using RAPD Markers

    Get PDF
    Prunus cerasus L. are an allotetraploid species from temperate climatic zone. The aim of this study was to characterize some native sour cherry genotypes from different orchards from Romania, based on RAPD markers. We used 14 primers RAPD to analyze a total of 14 varieties of sour cherries. After analysis, a good level of polymorphism was generated about only six primers (OPA 04, OPB10, OPA17, OPA20, OPA03 and OPB17) the rest of primers were considered monomorphic. The dendrograme separated the cultivars according to their genetic and geographic origin. The genetic similarity among the cultivars showed a good diversity between the genotypes, so we can suggest that our native cultivars of sour cherry can be considered as distinct genotypes for futures breeding programs and new cultivar identification. Results also confirm that the RAPD primers can be used for genetic studies and to evaluate the varieties for breeding programs

    Genetic Diversity of Some Sweet Cherry Cultivars Based on Molecular Markers

    Get PDF
    Sweet cherry (Prunus avium L.), originated around the Caspian and Black Sea, is an important fruit tree species of economic interest, and hence, breeding and conservation are requested (. Genetic analysis at the molecular level can be used effectively to study molecular polymorphism existing between intraspecific and interspecific tree species and phylogenetic relationships between them and their hybrids. The purpose of this study was to characterize and determine genetic relationships among the sweet cherry native genotypes belonging to Fruit Research & Development Station Bistrita, Romania, using RAPD markers. To eliminate the existence of possible synonyms from national romanian collection, we collect four Van cultivars, from four different national collection. For molecular analysis of the 16 varieties of sweet cherry were considered 13 RAPD primers selected from the literature. They were later used to determine the genetic variability at the molecular level using PAST program, and the dendrogram was generated based on Jaccard’s genetic distance. The dendrogram constructed by PAST software. The quantity and quality of the DNA obtained was suitable to achieve PCR amplification step. Only seven out of the 13 RAPD primers have generate polymorphic bands. The rest of seven were monomorphics. The most polymorphic primer was OPB10 which generated 11 bands from which 100% were polymorphic.Seven RAPD primers generated a high level of polymorphism which allowed to divide these cherry varieties into two groups according to their genetic geographical origin and the pedigree

    Relationship between Flag Leaf Characteristics and Main Yield Components in Oat (Avena sativa L.)

    Get PDF
    The objective of this study was to investigate relationships between leaf area index, leaf chlorophyll concentration, yield components and grain yield in oat (Avena sativa L.). Ten oat varieties were analyzed in field conditions regarding those traits. Flag leaf chlorophyll concentration range between 451.51 and 747.79 units of μmol of chlorophyll per m2. Also, leaf area index range between 13.68 to 32.84 cm2. Significant correlation indices were highlighted between yield components and leaf area index, yield/yield components and chlorophyll concentration of flag leaf

    Modern Breeding Strategies and Tools for Durable Late Blight Resistance in Potato

    No full text
    Cultivated potato (Solanum tuberosum) is a major crop worldwide. It occupies the second place after cereals (corn, rice, and wheat). This important crop is threatened by the Oomycete Phytophthora infestans, the agent of late blight disease. This pathogen was first encountered during the Irish famine during the 1840s and is a reemerging threat to potatoes. It is mainly controlled chemically by using fungicides, but due to health and environmental concerns, the best alternative is resistance. When there is no disease, no treatment is required. In this study, we present a summary of the ongoing efforts concerning resistance breeding of potato against this devastating pathogen, P. infestans. This work begins with the search for and selection of resistance genes, whether they are from within or from outside the species. The genetic methods developed to date for gene mining, such as effectoromics and GWAS, provide researchers with the ability to identify genes of interest more efficiently. Once identified, these genes are cloned using molecular markers (MAS or QRL) and can then be introduced into different cultivars using somatic hybridization or recombinant DNA technology. More innovative technologies have been developed lately, such as gene editing using the CRISPR system or gene silencing, by exploiting iRNA strategies that have emerged as promising tools for managing Phytophthora infestans, which can be employed. Also, gene pyramiding or gene stacking, which involves the accumulation of two or more R genes on the same individual plant, is an innovative method that has yielded many promising results. All these advances related to the development of molecular techniques for obtaining new potato cultivars resistant to P. infestans can contribute not only to reducing losses in agriculture but especially to ensuring food security and safety
    corecore