119 research outputs found
Energy aware optimization for low power radio technologies
The explosive growth of IoT is pushing the market towards cheap, very low power devices with a strong focus on miniaturization, for applications such as in-body sensors, personal health monitoring and microrobots. Proposing procedures for energy efficiency in IoT is a difficult task, as it is a rapidly growing market comprised of many and very diverse product categories using technologies that are not stable, evolving at a high pace. The research in this field proposes solutions that go from physical layer optimization up to the network layer, and the sensor network designer has to select the techniques that are best for its application specific architecture and radio technology used. This work is focused on exploring new techniques for enhancing the energy efficiency and user experience of IoT networks. We divide the proposed techniques in frame and chip level optimization techniques, respectively. While the frame level techniques are meant to improve the performance of existing radio technologies, the chip level techniques aim at replacing them with crystal-free architectures.
The identified frame level techniques are the use of preamble authentication and packet fragmentation, advisable for Low Power Wide Area Networks (LPWANs), a technology that offers the lowest energy consumption per provided service, but is vulnerable in front of energy exhaustion attacks and does not perform well in dense networks. The use of authenticated preambles between the sensors and gateways becomes a defence mechanism against the battery draining intended by attackers. We show experimentally that this approach is able to reduce with 91% the effect of an exhaustion attack, increasing the device's lifetime from less than 0.24 years to 2.6 years. The experiments were conducted using Loadsensing sensor nodes, commercially used for critical infrastructure control and monitoring. Even if exemplified on LoRaWAN, the use of preamble authentication is extensible to any wireless protocol. The use of packet fragmentation despite the packet fits the frame, is shown to reduce the probability of collisions while the number of users in the duty-cycle restricted network increases. Using custom-made Matlab simulations, important goodput improvement was obtained with fragmentation, with higher impact in slower and denser networks. Using NS3 simulations, we showed that combining packet fragmentation with group NACK can increase the network reliability, while reducing the energy consumed for retransmissions, at the cost of adding small headers to each fragment. It is a strategy that proves to be effective in dense duty-cycle restricted networks only, where the headers overhead is negligible compared to the network traffic.
As a chip level technique, we consider using radios for communication that do not use external frequency references such as crystal oscillators. This would enable having all sensor's elements on a single piece of silicon, rendering it even ten times more energy efficient due to the compactness of the chip. The immediate consequence is the loss of communication accuracy and ability to easily switch communication channels. In this sense, we propose a sequence of frequency synchronization algorithms and phases that have to be respected by a crystal-free device so that it can be able to join a network by finding the beacon channel, synthesize all communication channels and then maintain their accuracy against temperature change. The proposed algorithms need no additional network overhead, as they are using the existing network signaling. The evaluation is made in simulations and experimentally on a prototype implementation of an IEEE802.15.4 crystal-free radio. While in simulations we are able to change to another communication channel with very good frequency accuracy, the results obtained experimentally show an initial accuracy slightly above 40ppm, which will be later corrected by the chip to be below 40 ppm.El crecimiento significativo de la IoT está empujando al mercado hacia el desarrollo de dispositivos de bajo coste, de muy bajo consumo energético y con un fuerte enfoque en la miniaturización, para aplicaciones que requieran sensores corporales, monitoreo de salud personal y micro-robots. La investigación en el campo de la eficiencia energética en la IoT propone soluciones que van desde la optimización de la capa física hasta la capa de red. Este trabajo se centra en explorar nuevas técnicas para mejorar la eficiencia energética y la experiencia del usuario de las redes IoT. Dividimos las técnicas propuestas en técnicas de optimización de nivel de trama de red y chip, respectivamente. Si bien las técnicas de nivel de trama están destinadas a mejorar el rendimiento de las tecnologías de radio existentes, las técnicas de nivel de chip tienen como objetivo reemplazarlas por arquitecturas que no requieren de cristales. Las técnicas de nivel de trama desarrolladas en este trabajo son el uso de autenticación de preámbulos y fragmentación de paquetes, aconsejables para redes LPWAN, una tecnología que ofrece un menor consumo de energía por servicio prestado, pero es vulnerable frente a los ataques de agotamiento de energía y no escalan frente la densificación. El uso de preámbulos autenticados entre los sensores y las pasarelas de enlace se convierte en un mecanismo de defensa contra el agotamiento del batería previsto por los atacantes. Demostramos experimentalmente que este enfoque puede reducir con un 91% el efecto de un ataque de agotamiento, aumentando la vida útil del dispositivo de menos de 0.24 años a 2.6 años. Los experimentos se llevaron a cabo utilizando nodos sensores de detección de carga, utilizados comercialmente para el control y monitoreo de infrastructura crítica. Aunque la técnica se ejemplifica en el estándar LoRaWAN, el uso de autenticación de preámbulo es extensible a cualquier protocolo inalámbrico. En esta tesis se muestra también que el uso de la fragmentación de paquetes a pesar de que el paquete se ajuste a la trama, reduce la probabilidad de colisiones mientras aumenta el número de usuarios en una red con restricciones de ciclos de transmisión. Mediante el uso de simulaciones en Matlab, se obtiene una mejora importante en el rendimiento de la red con la fragmentación, con un mayor impacto en redes más lentas y densas. Usando simulaciones NS3, demostramos que combinar la fragmentación de paquetes con el NACK en grupo se puede aumentar la confiabilidad de la red, al tiempo que se reduce la energía consumida para las retransmisiones, a costa de agregar pequeños encabezados a cada fragmento. Como técnica de nivel de chip, consideramos el uso de radios para la comunicación que no usan referencias de frecuencia externas como los osciladores basados en un cristal. Esto permitiría tener todos los elementos del sensor en una sola pieza de silicio, lo que lo hace incluso diez veces más eficiente energéticamente debido a la integración del chip. La consecuencia inmediata, en el uso de osciladores digitales en vez de cristales, es la pérdida de precisión de la comunicación y la capacidad de cambiar fácilmente los canales de comunicación. En este sentido, proponemos una secuencia de algoritmos y fases de sincronización de frecuencia que deben ser respetados por un dispositivo sin cristales para que pueda unirse a una red al encontrar el canal de baliza, sintetizar todos los canales de comunicación y luego mantener su precisión contra el cambio de temperatura. Los algoritmos propuestos no necesitan una sobrecarga de red adicional, ya que están utilizando la señalización de red existente. La evaluación se realiza en simulaciones y experimentalmente en una implementación prototipo de una radio sin cristal IEEE802.15.4. Los resultados obtenidos experimentalmente muestran una precisión inicial ligeramente superior a 40 ppm, que luego será corregida por el chip para que sea inferior a 40 ppm.Postprint (published version
An Analysis of Packet Fragmentation Impact in LPWAN
Packet fragmentation has mostly been addressed in the literature when
referring to splitting data that does not fit a frame. It has received
attention in the IoT community after the 6LoWPAN working group of IETF started
studying the fragmentation headers to allow IPv6 1280 B MTU to be sent over
IEEE 802.15.4 networks supporting a 127 B MTU. In this paper, and following
some of the recent directions taken by the IETF LPWAN WG, an analysis of packet
fragmentation in LPWANs has been done. We aim to identify the impact of sending
the data in smaller fragments considering the restrictions of industrial
duty-cycled networks. The analyzed parameters were the energy consumption,
throughput, goodput and end to end delay introduced by fragmentation. The
results of our analysis show that packet fragmentation can increase the
reliability of the communication in duty-cycle restricted networks. This is of
especial relevance when densifying the network. We observed relevant impact in
energy consumption and extra latency, and identified the need for
acknowledgements from the gateway/sink to exploit some of the benefits raised
by fragmentation.Comment: paper accepted and presented at IEEE Wireless Communications and
Networking Conference, 15-18 April, Barcelona, Spai
Aggressive Fragmentation Strategy for Enhanced Network Performance in Dense LPWANs
Low Power Wide Area Networks (LPWANs) are gaining ground in the IoT landscape
and, in particular, for Industrial IoT applications. However, given the strict
duty cycle restrictions (e.g. 1% in SubGHz bands) and the limited power supply
of devices, requirements of some applications can not always be met. This paper
analyzes the potential of the combination of packet fragmentation -in the
direction of the IETF LPWAN working group- and negative group acknowledgement
(NACK) in LoRaWAN networks, a widespread LPWAN technology. Results show that
the proposed strategy can lead to significant gains in terms of goodput and
energy efficiency under congested situations.Comment: 2018 IEEE 29th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC
Interpretative e-Learning Personalization: Methodology, Formal Aspects and generic Scenarios of Individual/Group Dynamics. A case of a course in art history.
International audienceMost of todays e-learning development focus on knowledge formats and production, supposing perhaps that reception can be seen as the symmetric case of production in a courseware. In other words, that the point of view of the teacher may be transposed towards the learner. Nevertheless, understanding is an interpretation-dependent process, lying mainly on reading Strategies adopted by the learner. We may thus wonder whether it is yet possible to conceive systems whose architecture is driven by hermeneutical principles (i.e. where the interpretational activity is considered as a priority, and the role of the receptor of the course in the very constitution of the course is at least as important as this of the teacher) inherited from [3]. A reading strategy may be represented as a knowledge path built up from information put at disposal in the framework of a course. The aim of our work is to furnish some modeling issues in such a direction, using as case study academic course in art history. In collaboration with the Art Diagnosis Centre of Ormylia (Greece), some of us contributed, in the framework of various projects, to the setting up of a fine art ontology (over 30 000 concepts) able to cover the knowledge of large range iconographic corpora (see, for instance, [1])
Hybrid VLC Communications System for Increased Security Based on Raspberry Pi Microcomputer
VLC (Visible Light Communications) technology represents nowadays a new paradigm that could have a significant impact on future wireless communications. Although this technology has many advantages, one of the most common problem generated by the use of optical communication systems (based on the light in the visible spectrum), is the increased degree of disruption of the communication channel under the direct sunlight influence. The purpose of this article is to present the technological developments specific to the VLC/IR-RF (Visible Light Communication / Infrared - Radio-Frequency) hybrid system developed in the framework of a scientific research project started in 2017, which were recorded during the first half of 2019. This system based on multiple sensory devices such as temperature, motion, light intensity, dust, IR and microbolometer sensors will present the ability of intelligent monitoring and control of indoor environments (houses, office buildings, universities, campuses, etc.). From the point of view of the final purpose of the project, this will result in a hybrid bidirectional optical communication system capable of supporting high transfer rates, increased resistance to the specific sunlight disturbance, and the possibility of transmitting sensory information over long distances. The previous experimentation activities undertaken during the project were based on the use of the Arduino UNO development boards. Currently, it has been chosen to replace them with the development boards based on the ARM Cortex-A53 processor, in order to improve the system’s performance. The Arduino development boards have limited the performance of the communications system from the point of view of the transfer speeds and distances. The new Raspberry Pi development boards, being a complete operating and control system, presents high operational performances that can be used in favor of the final goal of the project.</p
Experimental Clock Calibration\\on a Crystal-Free Mote-on-a-Chip
The elimination of the off-chip frequency reference, typically a crystal
oscillator, would bring important benefits in terms of size, price and energy
efficiency to IEEE802.15.4 compliant radios and systems-on-chip. The stability
of on-chip oscillators is orders of magnitude worse than that of a crystal. It
is known that as the temperature changes, they can drift more than 50
ppm/{\deg}C. This paper presents the result of an extensive experimental study.
First, we propose mechanisms for crystal-free radios to be able to track an
IEEE802.15.4 join proxy, calibrate the on-chip oscillators and maintain
calibration against temperature changes. Then, we implement the resulting
algorithms on a crystal-free platform and present the results of an
experimental validation. We show that our approach is able to track a
crystal-based IEEE802.15.4-compliant join proxy and maintain the requested
radio frequency stability of +/-40 ppm, even when subject to temperature
variation of 2{\deg}C/min.Comment: CNERT: Computer and Networking Experimental Research using Testbeds,
in conjunction with IEEE INFOCOM 2019, April 29 - May 2, 2019, Paris, Franc
- …