17 research outputs found

    Leukemic conversion involving RAS mutations of type 1 CALR-mutated primary myelofibrosis in a patient treated for HCV cirrhosis: a case report

    Get PDF
    Somatic frameshift mutations in exon 9 of calreticulin (CALR) gene are recognized as disease drivers in primary myelofibrosis (PMF), one of the three classical Philadelphia-negative myeloproliferative neoplasms (MPNs). Type 1/type 1-like CALR mutations particularly confer a favorable prognostic and survival advantage in PMF patients. We report an unusual case of PMF incidentally diagnosed in a 68-year-old woman known with hepatitis C virus (HCV) cirrhosis who developed a progressive painful splenomegaly, without anomalies in blood cell counts. While harboring a type 1 CALR mutation, the patient underwent a leukemic transformation in less than 1 year from diagnosis, with a lethal outcome. Analysis of paired DNA samples from chronic and leukemic phases by a targeted next-generation sequencing (NGS) panel and single-nucleotide polymorphism (SNP) microarray revealed that the leukemic clone developed from the CALR-mutated clone through the acquisition of genetic events in the RAS signaling pathway: an increased variant allele frequency of the germline NRAS Y64D mutation present in the chronic phase (via an acquired uniparental disomy of chromosome 1) and gaining NRAS G12D in the blast phase. SNP microarray analysis showed five clinically significant copy number losses at regions 7q22.1, 8q11.1-q11.21, 10p12.1-p11.22, 11p14.1-p11.2, and Xp11.4, revealing a complex karyotype already in the chronic phase. We discuss how additional mutations, detected by NGS, as well as HCV infection and antiviral therapy, might have negatively impacted this type 1 CALR-mutated PMF. We suggest that larger studies are required to determine if more careful monitoring would be needed in MPN patients also carrying HCV and receiving anti-HCV treatment

    High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions

    Get PDF
    Ambitious methane (CH4) emission mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&G producer within the EU, with the second highest reported annual CH4 emissions from the energy sector in the year 2020 (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU's emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. Measured emissions were characterized by heavily skewed distributions, with 10% of the sites accounting for more than 70% of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h-1 per site of CH4 (3.6 %-8.4 %, 95% confidence interval) for oil production sites. This estimate represents the third highest when compared to measurementbased estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 kt CH4 yr-1 (range: 79-180 kt yr-1) from oil production sites in our studied areas in Romania. This is approximately 2.5 times higher than the reported emissions from the entire Romanian oil production sector for 2020. Based on the source-level characterization, up to three-quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks

    Treatment with Sildenafil and Donepezil Improves Angiogenesis in Experimentally Induced Critical Limb Ischemia

    No full text
    Objectives. In this study, we aimed to demonstrate the role of sildenafil (an antagonist of phosphodiesterase type 5 (PDE-5)) and donepezil (a specific and reversible inhibitor of acetylcholinesterase (Ach)) in increasing ischemia-induced angiogenesis. Method. Critical limb ischemia was induced by ligation of the common femoral artery followed by ligation of the common iliac artery. The operated animals were divided into 3 groups: receiving sildenafil, receiving donepezil, and surgery alone; the contralateral lower limb was used as a negative control. The results were controlled based on clinical score and Doppler ultrasound. Gastrocnemius muscle samples were taken from all animals, both from the ischemic and nonischemic limb and were used for histopathological and immunohistochemical examination for the evaluation of the number of nuclei/field, endothelial cells (CD31), dividing cells (Ki-67), and vascular endothelial growth factor (VEGFR-3). Results. An increasing tendency of the number of nuclei/field with time was observed both in the case of sildenafil and donepezil treatment. The formation of new capillaries (the angiogenesis process) was more strongly influenced by donepezil treatment compared to sildenafil or no treatment. This treatment significantly influenced the capillary/fiber ratio, which was increased compared to untreated ligated animals. Sildenafil treatment led to a gradual increase in the number of dividing cells, which was significantly compared to the negative control group and compared to the ligation control group. The same effect (increase in the number of Ki-67 positive cells) was more obvious in the case of donepezil treatment. Conclusion. Donepezil treatment has a better effect in ligation-induced ischemia compared to sildenafil, promoting angiogenesis in the first place, and also arteriogenesis

    Regional Lymphatic Inclusion in Orthotopic Hindlimb Transplantation: Establishment and Assessment of Feasibility in a Rodent Model.

    Get PDF
    Background The lymphatic system may play an important role in local immunomodulation in vascularized composite allotransplantation (VCA). Currently, there is no standardized VCA model that includes the regional draining lymphatic tissue. The aim of this study was to develop a rapid and efficient orthotopic hindlimb transplantation model in rats that included the draining lymphatic basin to permit further evaluation of the lymphatic system's role in VCA. Methods Thirty transplantations from Brown Norway rats to Lewis rats were performed. To include the regional lymphatic tissue, the superficial epigastric vessels were preserved to allow retrieval of the corresponding inguinal lymph nodes, including the inguinal fat pad, with the hindlimb. A cuff technique was used for the vein, whereas the conventional microsurgical technique was used for the arterial anastomosis. Vascular patency was confirmed through laser Doppler analysis at postoperative day 1 and histological analysis after euthanasia. Results The presence and vascularization of the inguinal lymph nodes were verified with indocyanine green lymphoscintigraphy at the time of transplantation. Mean total ischemia time was 69 ± 24 minutes, and mean recipient operation time was 80 ± 19 minutes. Overall transplant survival rate was 93.3%. Laser Doppler analysis showed vascular (technical) success, indocyanine green lymphoscintigraphy confirmed the presence of lymph nodes and the histological analysis revealed patent anastomoses. Conclusions We successfully developed an experimental orthotopic hindlimb transplantation model in rats that includes the draining inguinal lymphatic basin, which is an important asset in further research on lymphatic tissue and its role in VCA

    EVIDENCE FOR FAMILIAL AGGREGATION IN SIBLINGS WITH AUTOIMMUNE RHEUMATIC DISEASES

    Get PDF
    Autoimmune rheumatic disorders have a multifactorial determinism, caused by various environmental factors acting on the individual’s genetic susceptibility, destabilizing the systems which regulate the immune response. Epidemiological and genetic investigations are very important to demonstrate the contribution of genetic factors to the development of these autoimmune diseases. The contribution of genetic factors in causing autoimmune diseases has been demonstrated by familial aggregation. Moreover, it was also quantified by determining heritability, expressing the proportion of genetic factors in the etiology. It is now clear that common genes underlie multiple autoimmune disorders
    corecore