47 research outputs found

    Hybrid Honey Bees Mating Optimization Algorithm for Identifying the Near-Optimal Solution in Web Service Composition

    Get PDF
    This paper addresses the problem of optimality in semantic Web service composition by proposing a hybrid nature-inspired method for selecting the optimal or near-optimal solution in semantic Web Service Composition. The method hybridizes the Honey-Bees Mating Optimization algorithm with components inspired from genetic algorithms, reinforcement learning, and tabu search. To prove the necessity of hybridization, we have analyzed comparatively the experimental results provided by our hybrid selection algorithm versus the ones obtained with the classical Honey Bees Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora et al

    Blockchain based Decentralized Applications: Technology Review and Development Guidelines

    Full text link
    Blockchain or Distributed Ledger Technology is a disruptive technology that provides the infrastructure for developing decentralized applications enabling the implementation of novel business models even in traditionally centralized domains. In the last years it has drawn high interest from the academic community, technology developers and startups thus lots of solutions have been developed to address blockchain technology limitations and the requirements of applications software engineering. In this paper, we provide a comprehensive overview of DLT solutions analyzing the addressed challenges, provided solutions and their usage for developing decentralized applications. Our study reviews over 100 blockchain papers and startup initiatives from which we construct a 3-tier based architecture for decentralized applications and we use it to systematically classify the technology solutions. Protocol and Network Tier solutions address the digital assets registration, transactions, data structure, and privacy and business rules implementation and the creation of peer-to-peer networks, ledger replication, and consensus-based state validation. Scaling Tier solutions address the scalability problems in terms of storage size, transaction throughput, and computational capability. Finally, Federated Tier aggregates integrative solutions across multiple blockchain applications deployments. The paper closes with a discussion on challenges and opportunities for developing decentralized applications by providing a multi-step guideline for decentralizing the design of traditional systems and implementing decentralized applications.Comment: 30 pages, 8 figures, 9 tables, 121 reference

    Smart Grid Management using Blockchain: Future Scenarios and Challenges

    Full text link
    Decentralized management and coordination of energy systems are emerging trends facilitated by the uptake of the Internet of Things and Blockchain offering new opportunities for more secure, resilient, and efficient energy distribution. Even though the use of distributed ledger technology in the energy domain is promising, the development of decentralized smart grid management solutions is in the early stages. In this paper, we define a layered architecture of a blockchain-based smart grid management platform featuring energy data metering and tamper-proof registration, business enforcement via smart contracts, and Oracle-based integration of high computational services supporting the implementation of future grid management scenarios. Three such scenarios are discussed from the perspective of their implementation using the proposed blockchain platform and associated challenges: peer to peer energy trading, decentralized management, and aggregation of energy flexibility and operation of community oriented Virtual Power Plants.Comment: Accepted and presented at: 19th RoEduNet Conference: Networking in Education and Research, December 11-12, 202

    Exploring the Selection of the Optimal Web Service Composition through Ant Colony Optimization

    Get PDF
    This paper presents an ant-inspired method for selecting the optimal or a near optimal solution in semantic Web service composition. The proposed method adapts and enhances the Ant Colony Optimization meta-heuristic and considers as selection criteria the QoS attributes of the services involved in the composition as well as the semantic similarity between them. To improve the performance of the proposed selection method a 1-OPT heuristic is defined which expands the search space in a controlled way so as to avoid the stagnation on local optimal solutions. The ant-inspired selection method has been evaluated on a set of scenarios having different complexities and comparatively analyzed with a cuckoo-inspired and a bee-inspired selection method

    Expert System for Nutrition Care Process of Older Adults

    Get PDF
    This paper presents an expert system for a nutrition care process tailored for the specific needs of elders. Dietary knowledge is defined by nutritionists and encoded as Nutrition Care Process Ontology, and then used as underlining base and standardized model for the nutrition care planning. An inference engine is developed on top of the ontology, providing semantic reasoning infrastructure and mechanisms for evaluating the rules defined for assessing short and long term elders’ self-feeding behaviours, to identify unhealthy dietary patterns and detect the early instauration of malnutrition. Our expert system provides personalized intervention plans covering nutrition education, diet prescription and food ordering adapted to the older adult’s specific nutritional needs, health conditions and food preferences. In-lab evaluation results are presented proving the usefulness and quality of the expert system as well as the computational efficiency, coupling and cohesion of the defined ontology

    A service-based system for malnutrition prevention and self-management

    Get PDF
    Malnutrition is considered one of the root causes for the occurrence of other diseases. It is particularly common in the ageing population, where it requires more efficient handling and management to enable longer home independent living. However, to achieve this, a number of related challenges need to be overcome, especially those related to management of health and disease let alone other social and logistical barriers. This paper presents the design of a distributed system that enables homecare management in the context of self-feeding and malnutrition prevention through balanced nutritional intake. The design employs a service-based system that incorporates a number of services including monitoring of activities, nutritional reasoning for assessing feeding habits, diet recommendation for food planning, and marketplace invocation for automating food shopping to meet dietary requirements. The solution is deployed in a small pilot in 12 elder adult houses that, in early results, demonstrates its holistic user-centred scalable approach for malnutrition self-management
    corecore