35 research outputs found
On the theory of magnetic field dependence of heat conductivity in dielectric in isotropic model
Phonon polarization in a magnetic field is analyzed in isotropic model. It is
shown, that at presence of spin-phonon interaction phonon possess circular
polari-zation which causes the appearance of heat flux component perpendicular
both to temperature gradient and magnetic field.Comment: 5 pages, 0 figure
Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations
In this paper, thermal conductivity of crystalline GaAs is calculated using first-principles lattice dynamics. The harmonic and cubic force constants are obtained by fitting them to the force-displacement data from density functional theory calculations. Phonon dispersion is calculated from a dynamical matrix constructed using the harmonic force constants and phonon relaxation times are calculated using Fermi's Golden rule. The calculated GaAs thermal conductivity agrees well with experimental data. Thermal conductivity accumulations as a function of the phonon mean free path and as a function of the wavelength are obtained. Our results predict a significant size effect on the GaAs thermal conductivity in the nanoscale. Relaxation times of optical phonons and their contributions from different scattering channels are also studied. Such information will help the understanding of hot phonon effects in GaAs-based devices.United States. Dept. of Energy. Office of Science (Award DE-SC0001299
Π Π°ΡΡΠ΅Ρ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡΠΎΠΊΠ° Π² ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π΅
To analyze the elektrocyclone flow hydrodynamic computer calculation using the finite element method (FEM) is applied. The geometry of the model corresponds to the laboratoryΒ Β elektrocyclone. k-Ξ΅-turbulence model is used for the computation. The system of equations is solved by SIMPLE algorithm. The calculation results give a pattern of the flow velocity distribution and flow lines in different sections. There is conclusion based on the results about elektrocyclone flow hydrodynamic.ΠΠ»Ρ Π°Π½Π°Π»ΠΈΠ·Π° Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡΠΎΠΊΠ° Π² ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠΉ ΡΠ°ΡΡΠ΅Ρ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² (ΠΠΠ). ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Ρ. ΠΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° k-Ξ΅-ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΡΡΠΈ. Π‘ΠΈΡΡΠ΅ΠΌΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ΅ΡΠ°Π΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° SIMPLE. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠ° Π΄Π°ΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ ΠΏΠΎΡΠΎΠΊΠ° ΠΈ Π»ΠΈΠ½ΠΈΠΉ ΡΠΎΠΊΠ° Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΡΡ
. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π΅Π»Π°Π΅ΡΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π°. ΠΡΡΠ²Π»Π΅Π½ ΡΠ°ΠΊΡ, ΡΡΠΎ Π² Π±ΡΠ½ΠΊΠ΅ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π° ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π²ΠΈΡ
ΡΠ΅Π²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΡΠ°ΠΊΠΆΠ΅ Π½Π΅Ρ ΡΠ°Π·Π²ΠΈΡΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠ΅Π½ΠΎΠΊ, Π° Π½ΠΈΠΆΠ΅ Π²ΡΡ
Π»ΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΡΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΠΎΠΊΠ° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ 0. ΠΡΠΎ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΡΠΈΡΡΠΊΠΈ, Ρ. ΠΊ. Π²ΡΡ
ΠΎΠ΄ΡΡΠΈΠΉ ΡΠΈΡΡΡΠΉ Π³Π°Π· Π½Π΅ ΡΠ²Π»Π΅ΠΊΠ°Π΅Ρ Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΡΠ΅Π²ΡΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠ²ΠΎΠ΄Ρ: 1) Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΠΈΡΠ°Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠΠ; 2) ΠΏΠΎΡΠΎΠΊ Π² ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠΊΠ»ΠΎΠ½Π΅, ΠΊΠ°ΠΊ ΠΈ ΠΎΠΆΠΈΠ΄Π°Π»ΠΎΡΡ, ΠΈΠΌΠ΅Π΅Ρ Π·Π°ΠΊΡΡΡΠ΅Π½Π½ΡΡ ΡΡΡΡΠΊΡΡΡΡ, ΡΠ³ΠΎΠ» Π·Π°ΠΊΡΡΡΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π΄Π»ΠΈΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Ρ; 3) ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π±ΡΠ½ΠΊΠ΅ΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π²ΡΡ
ΠΎΠ΄ ΠΎΡΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π³Π°Π·Π° Π±Π΅Π· Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² Π½Π΅Π³ΠΎ ΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΡΠ°ΡΡΠΈΡ
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Copper isotope shifts in Pr and La substituted 123 and 124 cuprate superconductors; comparison with oxygen isotope shifts
Copper isotope shifts of T<SUB>c</SUB>have been measured in 123 and 124 cuprate superconductors with partial substitutions by Pr and La to reduce hole concentration. The 123 compositions were Pr<SUB>x</SUB>Y<SUB>1-x</SUB>Ba<SUB>2</SUB>Cu<SUB>3</SUB>O<SUB>7</SUB> (x=0.2, 0.3, 0.4) and YLa<SUB>0.3</SUB>Ba<SUB>1.7</SUB>Cu<SUB>3</SUB>O<SUB>7</SUB>. The 124 compounds were Pr<SUB>x</SUB>Y<SUB>1−x</SUB>Ba<SUB>2</SUB>Cu<SUB>4</SUB>O<SUB>8</SUB> (x=0.2, 0.3) and YLa<SUB>0.3</SUB>Ba<SUB>1.7</SUB>Cu<SUB>4</SUB>O<SUB>8</SUB>.Oxygen isotope experiments in materials with these compositions have shown substantial isotope shifts. We find that the Cu isotope shifts are also substantial, but somewhat smaller. Other findings are: (1) the Cu isotope exponent α<SUB>Cu</SUB> is positive, (2) α<SUB>Cu</SUB> increases rapidly as T<SUB>c</SUB> is reduced by substitution, and rises to a substantial fraction of the BCS value, behavior which is similar to that of the oxygen isotope exponent α O, and (3) when T<SUB>c</SUB> is reduced by non-isovalent substitution, both O and Cu isotope shifts increase greatly, but the ratio α<SUB>Cu/α</SUB>O remains 0.75±0.1 in both 123 and 124, regardless of the amount and site of the non-isovalent substitution