24 research outputs found

    РасчСт Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² элСктроциклонС

    Get PDF
    To analyze the elektrocyclone flow hydrodynamic computer calculation using the finite element method (FEM) is applied. The geometry of the model corresponds to the laboratoryΒ Β elektrocyclone. k-Ξ΅-turbulence model is used for the computation. The system of equations is solved by SIMPLE algorithm. The calculation results give a pattern of the flow velocity distribution and flow lines in different sections. There is conclusion based on the results about elektrocyclone flow hydrodynamic.Для Π°Π½Π°Π»ΠΈΠ·Π° Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² элСктроциклонС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΉ расчСт с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов (МКЭ). ГСомСтрия ΠΌΠΎΠ΄Π΅Π»ΠΈ соотвСтствуСт Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌΡƒ элСктроциклону. Для расчСтов использована k-Ξ΅-модСль турбулСнтности. БистСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° SIMPLE. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСта Π΄Π°ΡŽΡ‚ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρƒ распрСдСлСния скоростСй ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈ Π»ΠΈΠ½ΠΈΠΉ Ρ‚ΠΎΠΊΠ° Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сСчСниях. На основании Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² дСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ элСктроциклона. ВыявлСн Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π² Π±ΡƒΠ½ΠΊΠ΅Ρ€Π΅ элСктроциклона отсутствуСт Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅Ρ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠ³ΠΎ тСчСния Π² области стСнок, Π° Π½ΠΈΠΆΠ΅ Π²Ρ‹Ρ…Π»ΠΎΠΏΠ½ΠΎΠ³ΠΎ отвСрстия ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ 0. Π­Ρ‚ΠΎ благоприятно сказываСтся Π½Π° эффСктивности очистки, Ρ‚. ΠΊ. выходящий чистый Π³Π°Π· Π½Π΅ ΡƒΠ²Π»Π΅ΠΊΠ°Π΅Ρ‚ с собой осСвшиС частицы. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: 1) Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° элСктроциклона ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описана с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ рассчитана с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МКЭ; 2) ΠΏΠΎΡ‚ΠΎΠΊ Π² элСктроциклонС, ΠΊΠ°ΠΊ ΠΈ оТидалось, ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π°ΠΊΡ€ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ структуру, ΡƒΠ³ΠΎΠ» Π·Π°ΠΊΡ€ΡƒΡ‚ΠΊΠΈ зависит ΠΎΡ‚ Π΄Π»ΠΈΠ½Ρ‹ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹; 3) конструкция Π±ΡƒΠ½ΠΊΠ΅Ρ€Π° обСспСчиваСт Π²Ρ‹Ρ…ΠΎΠ΄ ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ Π³Π°Π·Π° Π±Π΅Π· вовлСчСния Π² Π½Π΅Π³ΠΎ ΡƒΠ»ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… частиц

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Isotope Effect in Thermal Conductivity of Polycrystalline CVD-Diamond: Experiment and Theory

    No full text
    We measured the thermal conductivity ΞΊ(T) of polycrystalline diamond with natural (natC) and isotopically enriched (12C content up to 99.96 at.%) compositions over a broad temperature T range, from 5 to 410 K. The high quality polycrystalline diamond wafers were produced by microwave plasma chemical vapor deposition in CH4-H2 mixtures. The thermal conductivity of 12C diamond along the wafer, as precisely determined using a steady-state longitudinal heat flow method, exceeds much that of the natC sample at T>60 K. The enriched sample demonstrates the value of ΞΊ(298K)=25.1Β±0.5 W cmβˆ’1 Kβˆ’1 that is higher than the ever reported conductivity of natural and synthetic single crystalline diamonds with natural isotopic composition. A phenomenological theoretical model based on the full version of Callaway theory of thermal conductivity is developed which provides a good approximation of the experimental data. The role of different resistive scattering processes, including due to minor isotope 13C atoms, defects, and grain boundaries, is estimated from the data analysis. The model predicts about a 37% increase of thermal conductivity for impurity and dislocation free polycrystalline chemical vapor deposition (CVD)-diamond with the 12C-enriched isotopic composition at room temperature
    corecore