24 research outputs found

    Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells.

    Get PDF
    Although there have been reports of the differentiation of mesenchymal stem cells and mouse embryonic stem (ES) cells into steroid-producing cells, the differentiation of human ES/induced pluripotent stem (iPS) cells into steroid-producing cells has not been reported. The purpose of our present study was to establish a method for inducing differentiation of human ES/iPS cells into steroid-producing cells. The first approach we tried was embryoid body formation and further culture on adherent plates. The resultant differentiated cells expressed mRNA encoding the steroidogenic enzymes steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, cytochrome P450-containing enzyme (CYP)-11A1, CYP17A1, and CYP19, and secreted progesterone was detected in the cell medium. However, expression of human chorionic gonadotropin was also detected, suggesting the differentiated cells were trophoblast like. We next tried a multistep approach. As a first step, human ES/iPS cells were induced to differentiate into the mesodermal lineage. After 7 d of differentiation induced by 6-bromoindirubin-3'-oxime (a glycogen synthase kinase-3β inhibitor), the human ES/iPS cells had differentiated into fetal liver kinase-1- and platelet derived growth factor receptor-α-expressing mesodermal lineage cells. As a second step, plasmid DNA encoding steroidogenic factor-1, a master regulator of steroidogenesis, was introduced into these mesodermal cells. The forced expression of steroidogenic factor-1 and subsequent addition of 8-bromoadenosine 3',5'-cyclic monophosphate induced the mesodermal cells to differentiate into the steroidogenic cell lineage, and expression of CYP21A2 and CYP11B1, in addition to steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, CYP11A1, and CYP17A1, was detected. Moreover, secreted cortisol was detected in the medium, but human chorionic gonadotropin was not. These findings indicate that the steroid-producing cells obtained through the described multistep method are not trophoblast like; instead, they exhibit characteristics of adrenal cortical cells

    High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease

    Get PDF
    Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment

    Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously demonstrated that vascular endothelial growth factor receptor type 2 (VEGF-R2)-positive cells induced from mouse embryonic stem (ES) cells can differentiate into both endothelial cells (ECs) and mural cells (MCs) and these vascular cells construct blood vessel structures in vitro. Recently, we have also established a method for the large-scale expansion of ECs and MCs derived from human ES cells. We examined the potential of vascular cells derived from human ES cells to contribute to vascular regeneration and to provide therapeutic benefit for the ischemic brain.</p> <p>Methods</p> <p>Phosphate buffered saline, human peripheral blood mononuclear cells (hMNCs), ECs-, MCs-, or the mixture of ECs and MCs derived from human ES cells were intra-arterially transplanted into mice after transient middle cerebral artery occlusion (MCAo).</p> <p>Results</p> <p>Transplanted ECs were successfully incorporated into host capillaries and MCs were distributed in the areas surrounding endothelial tubes. The cerebral blood flow and the vascular density in the ischemic striatum on day 28 after MCAo had significantly improved in ECs-, MCs- and ECs+MCs-transplanted mice compared to that of mice injected with saline or transplanted with hMNCs. Moreover, compared to saline-injected or hMNC-transplanted mice, significant reduction of the infarct volume and of apoptosis as well as acceleration of neurological recovery were observed on day 28 after MCAo in the cell mixture-transplanted mice.</p> <p>Conclusion</p> <p>Transplantation of ECs and MCs derived from undifferentiated human ES cells have a potential to contribute to therapeutic vascular regeneration and consequently reduction of infarct area after stroke.</p

    新規の摂食・エネルギー消費調節ペプチドとしてのC型ナトリウム利尿ペプチドの意義

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第15638号医博第3497号新制||医||983(附属図書館)28175京都大学大学院医学研究科内科系専攻(主査)教授 横出 正之, 教授 稲垣 暢也, 教授 芹川 忠夫学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells.

    Get PDF
    OBJECTIVE: We previously succeeded in inducing and isolating vascular endothelial cells (ECs) from both human embryonic stem (ES) and induced pluripotent stem (iPS) cells. Here, we compared the functionality of human adult ECs (HAECs), human ES-derived ECs (ESECs) and human iPS-derived ECs (iPSECs). METHODS AND RESULTS: We compared the cell proliferative potential, potential for migration, and tolerance to oxidative stress. ESECs were significantly superior to HAECs in all of these cell functions. The cell functions of iPSECs were comparable to those of ESECSs and also superior to HAECs. We then analyzed the gene expressions of HAECs, ESECs and iPSECs, and observed that the expression level of Sirt1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, is higher in ESECs and iPSECs than in HAECs. The inhibition of Sirt1 with a Sirt1-specific inhibitor and siRNA antagonized these differences between the three types of cells. CONCLUSIONS: Sirt1 plays a key role in the high cellular function of ESECs and iPSECs. Although further in vivo investigations are required, this study initially demonstrated the potential of ESECs and iPSECs as the cell source for regenerative medicine, and also showed the potential of ES cells as a useful tool for elucidating the molecular mechanism of cell aging

    Intracerebroventricular Administration of C-Type Natriuretic Peptide Suppresses Food Intake via Activation of the Melanocortin System in Mice.

    Get PDF
    C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with α-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system
    corecore