271 research outputs found

    Synthetic Observations of Carbon Lines of Turbulent Flows in Diffuse Multiphase Interstellar Medium

    Get PDF
    We examine observational characteristics of multi-phase turbulent flows in the diffuse interstellar medium (ISM) using a synthetic radiation field of atomic and molecular lines. We consider the multi-phase ISM which is formed by thermal instability under the irradiation of UV photons with moderate visual extinction AV1A_V\sim 1. Radiation field maps of C+^{+}, C0^0, and CO line emissions were generated by calculating the non-local thermodynamic equilibrium (nonLTE) level populations from the results of high resolution hydrodynamic simulations of diffuse ISM models. By analyzing synthetic radiation field of carbon lines of [\ion{C}{2}] 158 μ\mum, [\ion{C}{1}] 3P23P1^3P_2-^3P_1 (809 GHz), 3P13P0^3P_1-^3P_0 (492 GHz), and CO rotational transitions, we found a high ratio between the lines of high- and low-excitation energies in the diffuse multi-phase interstellar medium. This shows that simultaneous observations of the lines of warm- and cold-gas tracers will be useful in examining the thermal structure, and hence the origin of diffuse interstellar clouds.Comment: 16 pages, 10 figures : accepted for publication in ApJ. PDF version with high resolution figures is available (http://yso.mtk.nao.ac.jp/~ymasako/paper/ms_hires.pdf

    Structure and Stability of Phase Transition Layers in the Interstellar Medium

    Full text link
    We analyze the structure and stability of the transition layer (or front) that connects the cold neutral medium and warm neutral medium in the plane-parallel geometry. Such fronts appear in recent numerical simulations of a thermally bistable interstellar medium. The front becomes an evaporation or condensation front depending on the surrounding pressure. The stability analysis is performed in both long- and short-wavelength approximations. We find that the plane-parallel evaporation front is unstable under corrugational deformations, whereas the condensation front seems to be stable. The instability is analogous to the Darrieus-Landau instability in combustion front. The growth rate of the instability is proportional to the speed of the evaporation flow and the corrugation wavenumber for modes with wavelength much longer than the thickness of the front, and it is suppressed at scales approximately equal to the thickness of the front. The timescale of the instability is smaller than the cooling timescale of the warm neutral medium (1\sim 1 Myr), and can be as small as the cooling timescale of the cold neutral medium (0.010.1\sim 0.01-0.1 Myr). Thus, this instability should be one of the processes for driving the interstellar turbulence.Comment: 19 pages, 9 figures, accepted for publication in the Astrophysical Journa

    Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfven waves from photosphere to 0.3AU

    Full text link
    We show that the coronal heating and the fast solar wind acceleration in the coronal holes are natural consequence of the footpoint fluctuations of the magnetic fields at the photosphere, by performing one-dimensional magnetohydrodynamical simulation with radiative cooling and thermal conduction. We initially set up a static open flux tube with temperature 10^4K rooted at the photosphere. We impose transverse photospheric motions corresponding to the granulations with velocity = 0.7km/s and period between 20 seconds and 30 minutes, which generate outgoing Alfven waves. We self-consistently treat these waves and the plasma heating. After attenuation in the chromosphere by ~85% of the initial energy flux, the outgoing Alfven waves enter the corona and contribute to the heating and acceleration of the plasma mainly by the nonlinear generation of the compressive waves and shocks. Our result clearly shows that the initial cool and static atmosphere is naturally heated up to 10^6K and accelerated to 800km/s.Comment: 4 pages, 3 figures, ApJL, 632, L49, corrections of mistypes in eqs.(3) & (5), Mpeg movie for fig.1 (simulation result) is available at http://www-tap.scphys.kyoto-u.ac.jp/~stakeru/research/suzuki_200506.mp

    Unifying low and high mass star formation through density amplified hubs of filaments

    Full text link
    Context: Star formation takes place in giant molecular clouds, resulting in mass-segregated young stellar clusters composed of Sun-like stars, brown dwarves, and massive O-type(50-100\msun) stars. Aims: To identify candidate hub-filament systems (HFS) in the Milky-Way and examine their role in the formation of the highest mass stars and star clusters. Methods: Filaments around ~35000 HiGAL clumps that are detected using the DisPerSE algorithm. Hub is defined as a junction of three or more filaments. Column density maps were masked by the filament skeletons and averaged for HFS and non-HFS samples to compute the radial profile along the filaments into the clumps. Results: ~3700~(11\%) are candidate HFS of which, ~2150~(60\%) are pre-stellar, ~1400~(40\%) are proto-stellar. All clumps with L>10^4 Lsun and L>10^5 Lsun at distances respectively within 2kpc and 5kpc are located in the hubs of HFS. The column-densities of hubs are found to be enhanced by a factor of ~2 (pre-stellar sources) up to ~10 (proto-stellar sources). Conclusions: All high-mass stars preferentially form in the density enhanced hubs of HFS. This amplification can drive the observed longitudinal flows along filaments providing further mass accretion. Radiation pressure and feedback can escape into the inter-filamentary voids. We propose a "filaments to clusters" unified paradigm for star formation, with the following salient features: a) low-intermediate mass stars form in the filaments slowly (10^6yr) and massive stars quickly (10^5yr) in the hub, b) the initial mass function is the sum of stars continuously created in the HFS with all massive stars formed in the hub, c) Feedback dissiption and mass segregation arise naturally due to HFS properties, and c) explain age spreads within bound clusters and formation of isolated OB associations.Comment: 20 pages, 17 figures, Accepted by Astronomy and Astrophysic
    corecore