3,756 research outputs found

    Strangeness production at finite temperature and baryon density in an effective relativistic mean field model

    Full text link
    We study the strangeness production in hot and dense nuclear medium, by requiring the conservation of the baryon density, electric charge fraction and zero net strangeness. The hadronic equation of state is investigated by means of an effective relativistic mean field model, with the inclusion of the full octet of baryons and kaon mesons. Kaons are considered taking into account of an effective chemical potential depending on the self-consistent interaction between baryons. The obtained results are compared with a minimal coupling scheme, calculated for different values of the anti-kaon optical potential and with non-interacting kaon particles. In this context, we also consider the possible onset of the kaon condensation for a wide range of temperatures and baryon densities.Comment: 13 pages, 6 figure

    Photocurrent noise in multi-quantum-well infrared photodetectors

    Get PDF
    We report on photocurrent noise in AlGaAs/GaAs quantum-well infrared photodetectors having nominally the same design, except the number of wells N. The power spectral density does not scale as the inverse of the number of wells N in the presence of infrared radiation. These features can be understood by taking into account the nonlinearity arising at high infrared power as a consequence of the nonuniform potential distribution through the quantum-well structure

    Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    Full text link
    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron ppˉp\bar{p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty

    Design and test of an innovative static thin target for intense ion beams

    Get PDF
    In the present work an innovative design for thin target suited for high intensity beam is proposed, which consists in the deposition of the target material on a substrate of pyrolytic graphite, whose in-plane thermal conductivity allows a quick dissipation into a heat sink. Such a target cooling system has been designed for the NUMEN experiment (hosted at LNS-INFN, Catania), which will use targets of particular isotopes under highly intense ion beams. The time evolution and the spatial distribution of the temperature have been numerically calculated. Results of these calculations show that the target/graphite system can tolerate ion beams with intensities of about 50 eΌA and energy of 15 MeV/u. A significant nonuniformity in the target thickness would limit the energy resolution of the reaction products. A technique, based on the α-particle transmission, is used for measuring the thickness and uniformity of the target. Preliminary results from tests with this technique applied to the graphite substrate are shown

    The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    Get PDF
    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197^{197}Au+197^{197}Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.Comment: Talk given by P. Russotto at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Hadroproduction of the Chi1 and Chi2 States of Charmonium in 800 GeV/c Proton-Silicon Interactions

    Full text link
    The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.Comment: 4 pages, 4 figure

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR
    • 

    corecore