31 research outputs found

    Lectures on Supersymmetry Breaking

    Get PDF
    We review the subject of spontaneous supersymmetry breaking. First we consider supersymmetry breaking in a semiclassical theory. We illustrate it with several examples, demonstrating different phenomena, including metastable supersymmetry breaking. Then we give a brief review of the dynamics of supersymmetric gauge theories. Finally, we use this dynamics to present various mechanisms for dynamical supersymmetry breaking. These notes are based on lectures given by the authors in 2007, at various schools.Comment: 47 pages. v2: minor correction

    Global Symmetries and D-Terms in Supersymmetric Field Theories

    Full text link
    We study the role of D-terms in supersymmetry (SUSY) breaking. By carefully analyzing the SUSY multiplets containing various conserved currents in theories with global symmetries, we obtain a number of constraints on the renormalization group flow in supersymmetric field theories. Under broad assumptions, these results imply that there are no SUSY-breaking vacua, not even metastable ones, with parametrically large D-terms. This explains the absence of such D-terms in models of dynamical SUSY-breaking. There is, however, a rich class of calculable models which generate comparable D-terms and F-terms through a variety of non-perturbative effects; these D-terms can be non-abelian. We give several explicit examples of such models, one of which is a new calculable limit of the 3-2 model.Comment: 34 pages, 2 figures; reference added, minor change

    The Phase Structure of an SU(N) Gauge Theory with N_f Flavors

    Get PDF
    We investigate the chiral phase transition in SU(N) gauge theories as the number of quark flavors, NfN_f, is varied. We argue that the transition takes place at a large enough value of NfN_f so that it is governed by the infrared fixed point of the ÎČ\beta function. We study the nature of the phase transition analytically and numerically, and discuss the spectrum of the theory as the critical value of NfN_f is approached in both the symmetric and broken phases. Since the transition is governed by a conformal fixed point, there are no light excitations on the symmetric side. We extend previous work to include higher order effects by developing a renormalization group estimate of the critical coupling.Comment: 34 pages, 1 figure. More references adde

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry

    Full text link
    It is well known that R-symmetric models dramatically alleviate the SUSY flavor and CP problems. We study particular modifications of existing R-symmetric models which share the solution to the above problems, and have interesting consequences for electroweak baryogenesis and the Dark Matter (DM) content of the universe. In particular, we find that it is naturally possible to have a strongly first-order electroweak phase transition while simultaneously relaxing the tension with EDM experiments. The R-symmetry (and its small breaking) implies that the gauginos (and the neutralino LSP) are pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role in making the electroweak phase transition strongly first-order. The pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac particle during freeze-out, but like a Majorana particle for annihilation today and in scattering against nuclei, thus being consistent with current constraints. Assuming a standard cosmology, it is possible to simultaneously have a strongly first-order phase transition conducive to baryogenesis and have the LSP provide the full DM relic abundance, in part of the allowed parameter space. However, other possibilities for DM also exist, which are discussed. It is expected that upcoming direct DM searches as well as neutrino signals from DM annihilation in the Sun will be sensitive to this class of models. Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
    corecore