21 research outputs found

    Thermal effects in the magnetic Casimir-Polder interaction

    Full text link
    We investigate the magnetic dipole coupling between a metallic surface and an atom in a thermal state, ground state and excited hyperine state. This interaction results in a repulsive correction and - unlike the electrical dipole contribution - depends sensitively on the Ohmic dissipation in the material

    On the Casimir entropy between 'perfect crystals'

    Full text link
    We give a re-interpretation of an `entropy defect' in the electromagnetic Casimir effect. The electron gas in a perfect crystal is an electromagnetically disordered system whose entropy contains a finite Casimir-like contribution. The Nernst theorem (third law of thermodynamics) is not applicable.Comment: 10 pages, 2 figures, proceedings of "Quantum Field Theory under the influence of external boundary conditions" QFExt (Oklahoma, Sep 2009

    Optical BCS conductivity at imaginary frequencies and dispersion energies of superconductors

    Full text link
    We present an efficient expression for the analytic continuation to arbitrary complex frequencies of the complex optical and AC conductivity of a homogeneous superconductor with arbitrary mean free path. Knowledge of this quantity is fundamental in the calculation of thermodynamic potentials and dispersion energies involving type-I superconducting bodies. When considered for imaginary frequencies, our formula evaluates faster than previous schemes involving Kramers--Kronig transforms. A number of applications illustrates its efficiency: a simplified low-frequency expansion of the conductivity, the electromagnetic bulk self-energy due to longitudinal plasma oscillations, and the Casimir free energy of a superconducting cavity.Comment: 20 pages, 7 figures, calculation of Casimir energy adde

    Temperature dependence of the magnetic Casimir-Polder interaction

    Full text link
    We analyze the magnetic dipole contribution to atom-surface dispersion forces. Unlike its electrical counterpart, it involves small transition frequencies that are comparable to thermal energy scales. A significant temperature dependence is found near surfaces with a nonzero DC conductivity, leading to a strong suppression of the dispersion force at T > 0. We use thermal response theory for the surface material and discuss both normal metals and superconductors. The asymptotes of the free energy of interaction and of the entropy are calculated analytically over a large range of distances. Near a superconductor, the onset of dissipation at the phase transition strongly changes the interaction, including a discontinuous entropy. We discuss the similarities with the Casimir interaction beween two surfaces and suggest that precision measurements of the atom-surface interaction may shed new light upon open questions around the temperature dependence of dispersion forces between lossy media.Comment: 11 figure

    Casimir energy and entropy between dissipative mirrors

    Full text link
    We discuss the Casimir effect between two identical, parallel slabs, emphasizing the role of dissipation and temperature. Starting from quite general assumptions, we analyze the behavior of the Casimir entropy in the limit T->0 and link it to the behavior of the slab's reflection coefficients at low frequencies. We also derive a formula in terms of a sum over modes, valid for dissipative slabs that can be interpreted in terms of a damped quantum oscillator.Comment: 8 pages, 1 figur
    corecore