477 research outputs found
A new data analysis framework for the search of continuous gravitational wave signals
Continuous gravitational wave signals, like those expected by asymmetric
spinning neutron stars, are among the most promising targets for LIGO and Virgo
detectors. The development of fast and robust data analysis methods is crucial
to increase the chances of a detection. We have developed a new and flexible
general data analysis framework for the search of this kind of signals, which
allows to reduce the computational cost of the analysis by about two orders of
magnitude with respect to current procedures. This can correspond, at fixed
computing cost, to a sensitivity gain of up to 10%-20%, depending on the search
parameter space. Some possible applications are discussed, with a particular
focus on a directed search for sources in the Galactic center. Validation
through the injection of artificial signals in the data of Advanced LIGO first
observational science run is also shown.Comment: 21 pages, 8 figure
An improved algorithm for narrow-band searches of continuous gravitational waves
Continuous gravitational waves signals, emitted by asymmetric spinning
neutron stars, are among the main targets of current detectors like Advanced
LIGO and Virgo. In the case of sources, like pulsars, which rotational
parameters are measured through electromagnetic observations, typical searches
assume that the gravitational wave frequency is at a given known fixed ratio
with respect to the star rotational frequency. For instance, for a neutron star
rotating around one of its principal axis of inertia the gravitational signal
frequency would be exactly two times the rotational frequency of the star. It
is possible, however, that this assumption is wrong. This is why search
algorithms able to take into account a possible small mismatch between the
gravitational waves frequency and the frequency inferred from electromagnetic
observations have been developed. In this paper we present an improved pipeline
to perform such narrow-band searches for continuous gravitational waves from
neutron stars, about three orders of magnitude faster than previous
implementations. The algorithm that we have developed is based on the {\it
5-vectors} framework and is able to perform a fully coherent search over a
frequency band of width (Hertz) and for hundreds of spin-down
values running a few hours on a standard workstation. This new algorithm opens
the possibility of long coherence time searches for objects which rotational
parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ
A semi-coherent analysis method to search for continuous gravitational waves emitted by ultra-light boson clouds around spinning black holes
As a consequence of superradiant instability induced in Kerr black holes,
ultra-light boson clouds can be a source of persistent gravitational waves,
potentially detectable by current and future gravitational-wave detectors.
These signals have been predicted to be nearly monochromatic, with a small
steady frequency increase (spin-up), but given the several assumptions and
simplifications done at theoretical level, it is wise to consider, from the
data analysis point of view, a broader class of gravitational signals in which
the phase (or the frequency) slightly wander in time. Also other types of
sources, e.g. neutron stars in which a torque balance equilibrium exists
between matter accretion and emission of persistent gravitational waves, would
fit in this category. In this paper we present a robust and computationally
cheap analysis pipeline devoted to the search of such kind of signals. We
provide a full characterization of the method, through both a theoretical
sensitivity estimation and through the analysis of syntethic data in which
simulated signals have been injected. The search setup for both all-sky
searches and higher sensitivity directed searches is discussed.Comment: 13 pages, 13 figure
Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury
Sepsis remains a serious cause of morbidity and mortality in critically ill patients, with limited therapeutic options available. Of the several disorders connected with sepsis, acute kidney injury (AKI) is one of the major complications. The pathophysiology of sepsis-induced AKI is characterized by severe inflammation in renal parenchyma with endothelial dysfunction, intra-glomerular thrombosis and tubular injury. Endothelial dysfunction is regulated by several mechanisms implicated in cellular de-differentiation, such as endothelial-to-mesenchymal transition (EndMT). Gram-negative bacteria and their cell wall component lipopolysaccharides (LPSs) are frequently involved in the pathogenesis of AKI. The host recognition of LPS requires a specific receptor, which belongs to the Toll-like receptor (TLR) family of proteins, called TLR4, and two carrier proteins, namely the LPS-binding protein (LBP) and cluster of differentiation 14 (CD14). In particular, LBP is released as a consequence of Gram-negative infection and maximizes the activation of TLR4 signalling. Recent findings regarding the emerging role of LBP in mediating sepsis-induced AKI, and the possible beneficial effects resulting from the removal of this endogenous adaptor protein, will be discussed in this review
Design optimization of heat wheels for energy recovery in HVAC system
Air to air heat exchangers play a crucial role in mechanical ventilation equipment, due to the potential primary energy savings both in case of refurbishment of existing buildings or in case of new ones. In particular, interest in heat wheels is increasing due to their low pressure drop and high effectiveness. In this paper a detailed optimization of design parameters of heat wheels is performed in order to maximize sensible effectiveness and to minimize pressure drop. The analysis is carried out through a one dimensional lumped parameters heat wheel model, which solves heat and mass transfer equations, and through appropriate correlations to estimate pressure drop. Simulation results have been compared with experimental data of a heat wheel tested in specific facilities, and good agreement is attained. The device optimization is performed through the variation of main design parameters, such as heat wheel length, channel base, height and thickness and for different operating conditions, namely the air face velocity and the revolution speed. It is shown that the best configurations are achieved with small channel thickness and, depending on the required sensible effectiveness, with appropriate values of wheel length and channel base and height
Endothelial dysfunction and renal fibrosis in endotoxemia-induced oliguric kidney injury: possible role of LPS binding protein
The pathophysiology of endotoxemia-induced acute kidney injury (AKI) is characterized by an intense activation of the host immune system and renal resident cells by lipopolysaccharide (LPS) and derived proinflammatory products. However, the occurrence of renal fibrosis in this setting has been poorly investigated. The aim of the present study was to investigate the possible association between endothelial dysfunction and acute development of tissue fibrosis in a swine model of LPS-induced AKI. Moreover, we studied the possible effects of coupled plasma filtration adsorption (CPFA) in this setting
- …