179 research outputs found

    Bridging consent: from toll bridges to lift bridges?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to share human biological samples, associated data and results across disease-specific and population-based human research biobanks is becoming increasingly important for research into disease development and translation. Although informed consent often does not anticipate such cross-domain sharing, it is important to examine its plausibility. The purpose of this study was to explore the feasibility of bridging consent between disease-specific and population-based research. Comparative analyses of 1) current ethical and legal frameworks governing consent and 2) informed consent models found in disease-specific and population-based research were conducted.</p> <p>Discussion</p> <p>Ethical and legal frameworks governing consent dissuade cross-domain data sharing. Paradoxically, analysis of consent models for disease-specific and population-based research reveals such a high degree of similarity that bridging consent could be possible if additional information regarding bridging was incorporated into consent forms. We submit that bridging of consent could be supported if current trends endorsing a new interpretation of consent are adopted. To illustrate this we sketch potential bridging consent scenarios.</p> <p>Summary</p> <p>A bridging consent, respectful of the spirit of initial consent, is feasible and would require only small changes to the content of consents currently being used. Under a bridging consent approach, the initial data and samples collection can serve an identified research project as well as contribute to the creation of a resource for a range of other projects.</p

    The life history of 21 breast cancers.

    Get PDF
    Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis

    Mutational processes molding the genomes of 21 breast cancers

    Get PDF
    All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed

    The fractal globule as a model of chromatin architecture in the cell

    Get PDF
    The fractal globule is a compact polymer state that emerges during polymer condensation as a result of topological constraints which prevent one region of the chain from passing across another one. This long-lived intermediate state was introduced in 1988 (Grosberg et al. 1988) and has not been observed in experiments or simulations until recently (Lieberman-Aiden et al. 2009). Recent characterization of human chromatin using a novel chromosome conformational capture technique brought the fractal globule into the spotlight as a structural model of human chromosome on the scale of up to 10 Mb (Lieberman-Aiden et al. 2009). Here, we present the concept of the fractal globule, comparing it to other states of a polymer and focusing on its properties relevant for the biophysics of chromatin. We then discuss properties of the fractal globule that make it an attractive model for chromatin organization inside a cell. Next, we connect the fractal globule to recent studies that emphasize topological constraints as a primary factor driving formation of chromosomal territories. We discuss how theoretical predictions, made on the basis of the fractal globule model, can be tested experimentally. Finally, we discuss whether fractal globule architecture can be relevant for chromatin packing in other organisms such as yeast and bacteria

    Using State Space Exploration to Determine How Gene Regulatory Networks Constrain Mutation Order in Cancer Evolution

    Get PDF
    Cancer develops via the progressive accumulation of somatic mutations, which subvert the normal operation of the gene regulatory network of the cell. However, little is known about the order in which mutations are acquired in successful clones. A particular sequence of mutations may confer an early selective advantage to a clone by increasing survival or proliferation, or lead to negative selection by triggering cell death. The space of allowed sequences of mutations is therefore constrained by the gene regulatory network. Here, we introduce a methodology for the systematic exploration of the effect of every possible sequence of oncogenic mutations in a cancer cell modelled as a qualitative network. Our method uses attractor identification using binary decision diagrams and can be applied to both synchronous and asynchronous systems. We demonstrate our method using a recently developed model of ER-negative breast cancer. We show that there are differing levels of constraint in the order of mutations for different combinations of oncogenes, and that the effects of ErbB2/HER2 over-expression depend on the preceding mutations
    corecore