1 research outputs found
Knowledge Rich Natural Language Queries over Structured Biological Databases
Increasingly, keyword, natural language and NoSQL queries are being used for
information retrieval from traditional as well as non-traditional databases
such as web, document, image, GIS, legal, and health databases. While their
popularity are undeniable for obvious reasons, their engineering is far from
simple. In most part, semantics and intent preserving mapping of a well
understood natural language query expressed over a structured database schema
to a structured query language is still a difficult task, and research to tame
the complexity is intense. In this paper, we propose a multi-level
knowledge-based middleware to facilitate such mappings that separate the
conceptual level from the physical level. We augment these multi-level
abstractions with a concept reasoner and a query strategy engine to dynamically
link arbitrary natural language querying to well defined structured queries. We
demonstrate the feasibility of our approach by presenting a Datalog based
prototype system, called BioSmart, that can compute responses to arbitrary
natural language queries over arbitrary databases once a syntactic
classification of the natural language query is made