7 research outputs found

    Minibeam radiotherapy with small animal irradiators: in-vitro and in-vivo feasibility studies

    Get PDF
    Minibeam radiation therapy (MBRT) delivers an ultrahigh dose of x-ray (≥100 Gy) in 200–1000 µm beams (peaks), separated by wider non-irradiated regions (valleys) usually as a single temporal fraction. Preclinical studies performed at synchrotron facilities revealed that MBRT is able to ablate tumors while maintaining normal tissue integrity. The main purpose of the present study was to develop an efficient and accessible method to perform MBRT using a conventional x-ray irradiator. We then tested this new method both in vitro and in vivo. Using commercially available lead ribbon and polyethylene sheets, we constructed a collimator that converted the cone beam of an industrial irradiator to 44 identical beams (collimator size ≈ 4 × 10 cm). The dosimetry characteristics of the generated beams were evaluated using two different radiochromic films (beam FWHM = 246 ± 32 µm; center-to-center = 926 ± 23 µm; peak-to-valley dose ratio = 24.35 ± 2.10; collimator relative output factor = 0.84 ± 0.04). Clonogenic assays demonstrated the ability of our method to induce radiobiological cell death in two radioresistant murine tumor cell lines (TRP = glioblastoma; B16-F10 = melanoma). A radiobiological equivalent dose (RBE) was calculated by evaluating the acute skin response to graded doses of MBRT and conventional radiotherapy (CRT). Normal mouse skin demonstrated resistance to doses up to 150 Gy on peak. MBRT significantly extended the survival of mice with flank melanoma tumors compared to CRT when RBE were applied (overall p < 0.001). Loss of spatial resolution deep in the tissue has been a major concern. The beams generated using our collimator maintained their resolution in vivo (mouse brain tissue) and up to 10 cm deep in the radiochromic film. In conclusion, the initial dosimetric, in vitro and in vivo evaluations confirmed the utility of this affordable and easy-to-replicate minibeam collimator for future preclinical studies

    Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study

    Get PDF
    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 µm wide and spaced at 900 µm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications

    Estimating scatter from sparsely measured primary signal

    No full text
    Scatter radiation severely degrades the image quality. Measurement-based scatter correction methods sample the scatter signal at sparsely distributed points, from which the scatter profile is estimated and deterministically removed from the projection image. The estimation of the scatter profile is generally done through a spline interpolation and the resulting scatter profile is quite smooth. Consequently, the noise is intact and the signal-to-noise ratio is reduced in the projection image after scatter correction, leading to image artifacts and increased noise in the reconstruction images. We propose a simple and effective method, referred to as filtered scatter-to-primary ratio ([Formula: see text]-SPR) estimation, to estimate the scatter profile using the sparsely sampled scatter signal. Using the primary sampling device and the stationary digital tomosynthesis systems previously developed in our lab, we evaluated and compared the [Formula: see text]-SPR method in comparison with existing methods in terms of contrast ratio, signal difference-to-noise ratio, and modulation transfer function. A significant improvement in image quality is observed in both the projection and the reconstruction images using the proposed method

    Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study

    No full text
    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 µm wide and spaced at 900 µm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications

    Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment

    No full text
    Microbeam radiation therapy (MRT) is a promising preclinical modality for cancer treatment, with remarkable preferential tumoricidal effects, that is, tumor eradication without damaging normal tissue functions. Significant lifespan extension has been demonstrated in brain tumor-bearing small animals treated with MRT. So far, MRT experiments can only be performed in a few synchrotron facilities around the world. Limited access to MRT facilities prevents this enormously promising radiotherapy technology from reaching the broader biomedical research community and hinders its potential clinical translation. We recently demonstrated, for the first time, the feasibility of generating microbeam radiation in a laboratory environment using a carbon nanotube x-ray source array and performed initial small animal studies with various brain tumor models. This new nanotechnology-enabled microbeam delivery method, although still in its infancy, has shown promise for achieving comparable therapeutic effects to synchrotron MRT and has offered a potential pathway for clinical translation
    corecore