93 research outputs found
Detecting the Cold Spot as a Void with the Non-Diagonal Two-Point Function
The anomaly in the Cosmic Microwave Background known as the "Cold Spot" could
be due to the existence of an anomalously large spherical (few hundreds Mpc/h
radius) underdense region, called a "Void" for short. Such a structure would
have an impact on the CMB also at high multipoles l through Lensing. This would
then represent a unique signature of a Void. Modeling such an underdensity with
an LTB metric, we show that the Lensing effect leads to a large signal in the
non-diagonal two-point function, centered in the direction of the Cold Spot,
such that the Planck satellite will be able to confirm or rule out the Void
explanation for the Cold Spot, for any Void radius with a Signal-to-Noise ratio
of at least O(10).Comment: v1: 6 pages, 2 figures; v2: 6 pages, 2 figures, text improved, to
appear on JCA
Large scale directional anomalies in the WMAP 5yr ILC map
We study the alignments of the low multipoles of CMB anisotropies with
specific directions in the sky (i.e. the dipole, the north Ecliptic pole, the
north Galactic pole and the north Super Galactic pole). Performing
random extractions we have found that: 1) separately quadrupole and octupole
are mildly orthogonal to the dipole but when they are considered together, in
analogy to \cite{Copi2006}, we find an unlikely orthogonality at the level of
0.8% C.L.; 2) the multipole vectors associated to are unlikely aligned
with the dipole at C.L.; 3) the multipole vectors associated to
are mildly orthogonal to the dipole but when we consider only maps
that show exactly the same correlation among the multipoles as in the observed
WMAP 5yr ILC, these multipole vectors are unlikely orthogonal to the dipole at
C.L..Comment: 12 pages, 10 figures, 3 tables. Accepted for publication in JCAP. Few
references added and some typos correcte
Simulating Cosmic Microwave Background maps in multi-connected spaces
This article describes the computation of cosmic microwave background
anisotropies in a universe with multi-connected spatial sections and focuses on
the implementation of the topology in standard CMB computer codes. The key
ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multi-connected space topology. The correlators of
the coefficients of the decomposition of the temperature fluctuation in
spherical harmonics are computed and examples are given for spatially flat
spaces and one family of spherical spaces, namely the lens spaces. Under the
hypothesis of Gaussian initial conditions, these correlators encode all the
topological information of the CMB and suffice to simulate CMB maps.Comment: 33 pages, 55 figures, submitted to PRD. Higher resolution figures
available on deman
Cosmological Imprints of Pre-Inflationary Particles
We study some of the cosmological imprints of pre-inflationary particles. We
show that each such particle provides a seed for a spherically symmetric cosmic
defect. The profile of this cosmic defect is fixed and its magnitude is linear
in a single parameter that is determined by the mass of the pre-inflationary
particle. We study the CMB and peculiar velocity imprints of this cosmic defect
and suggest that it could explain some of the large scale cosmological
anomalies.Comment: 31 pages, 7 figure
A Theory of a Spot
We present a simple inflationary scenario that can produce arbitrarily large
spherical underdense or overdense regions embedded in a standard Lambda cold
dark matter paradigm, which we refer to as bubbles. We analyze the effect such
bubbles would have on the Cosmic Microwave Background (CMB). For super-horizon
sized bubble in the vicinity of the last scattering surface, a signal is
imprinted onto CMB via a combination of Sach-Wolfe and an early integrated
Sach-Wolfe (ISW) effects. Smaller, sub-horizon sized bubbles at lower redshifts
(during matter domination and later) can imprint secondary anisotropies on the
CMB via Rees-Sciama, late-time ISW and Ostriker-Vishniac effects. Our scenario,
and arguably most similar inflationary models, produce bubbles which are
over/underdense in potential: in density such bubbles are characterized by
having a distinct wall with the interior staying at the cosmic mean density. We
show that such models can potentially, with only moderate fine tuning, explain
the \emph{cold spot}, a non-Gaussian feature identified in the Wilkinson
Microwave Anisotropy Probe (WMAP) data by several authors. However, more
detailed comparisons with current and future CMB data are necessary to confirm
(or rule out) this scenario.Comment: 19 pages, 19 figures, added references and explanations, JCAP in
pres
Cosmic microwave background anisotropies in multi-connected flat spaces
This article investigates the signature of the seventeen multi-connected flat
spaces in cosmic microwave background (CMB) maps. For each such space it
recalls a fundamental domain and a set of generating matrices, and then goes on
to find an orthonormal basis for the set of eigenmodes of the Laplace operator
on that space. The basis eigenmodes are expressed as linear combinations of
eigenmodes of the simply connected Euclidean space. A preceding work, which
provides a general method for implementing multi-connected topologies in
standard CMB codes, is then applied to simulate CMB maps and angular power
spectra for each space. Unlike in the 3-torus, the results in most
multi-connected flat spaces depend on the location of the observer. This effect
is discussed in detail. In particular, it is shown that the correlated circles
on a CMB map are generically not back-to-back, so that negative search of
back-to-back circles in the WMAP data does not exclude a vast majority of flat
or nearly flat topologies.Comment: 33 pages, 19 figures, 1 table. Submitted to PR
Conditions for spontaneous homogenization of the Universe
The present-day Universe appears to be homogeneous on very large scales. Yet
when the casual structure of the early Universe is considered, it becomes
apparent that the early Universe must have been highly inhomogeneous. The
current paradigm attempts to answer this problem by postulating the inflation
mechanism However, inflation in order to start requires a homogeneous patch of
at least the horizon size. This paper examines if dynamical processes of the
early Universe could lead to homogenization. In the past similar studies seem
to imply that the set of initial conditions that leads to homogenization is of
measure zero. This essay proves contrary: a set of initial conditions for
spontaneous homogenization of cosmological models can form a set of non-zero
measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay
competitio
How Sensitive is the CMB to a Single Lens?
We study the imprints of a single lens, that breaks statistical isotropy, on
the CMB and calculate the signal to noise ratio (S/N) for its detection. We
emphasize the role of non-Gaussianities induced by LCDM weak lensing in this
calculation and show that typically the S/N is much smaller than expected. In
particular we find that the hypothesis that a void (texture) is responsible for
the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure
Dynamics of Void and its Shape in Redshift Space
We investigate the dynamics of a single spherical void embedded in a
Friedmann-Lema\^itre universe, and analyze the void shape in the redshift
space. We find that the void in the redshift space appears as an ellipse shape
elongated in the direction of the line of sight (i.e., an opposite deformation
to the Kaiser effect). Applying this result to observed void candidates at the
redshift z~1-2, it may provide us with a new method to evaluate the
cosmological parameters, in particular the value of a cosmological constant.Comment: 19 pages, 11 figure
Perceiving the equation of state of Dark Energy while living in a Cold Spot
The Cold Spot could be an adiabatic perturbation on the surface of last
scattering, in which case it is an over-density with comoving radius of the
order of 1 Gpc. We assess the effect that living in a similar structure,
without knowing it, has on our perception of the equation of state of Dark
Energy. We find that structures of dimensions such that they could cause the
Cold Spot on the CMB, affect the perceived equation of state of Dark Energy
possibly up to ten percent.Comment: 17 pages, 5 figures, matches published versio
- …