8 research outputs found

    Sensitivity and specificity of two WHO approved SARS-CoV2 antigen assays in detecting patients with SARS-CoV2 infection

    Get PDF
    Background: SARS-CoV-2 rapid antigen (Ag) detection kits are widely used in addition to quantitative reverse transcription PCR PCR (RT-qPCR), as they are cheaper with a rapid turnaround time. As there are many concerns regarding their sensitivity and specificity, in different settings, we evaluated two WHO approved rapid Ag kits in a large cohort of Sri Lankan individuals. Methods: Paired nasopharangeal swabs were obtained from 4786 participants for validation of the SD-Biosensor rapid Ag assay and 3325 for the Abbott rapid Ag assay, in comparison to RT-qPCR. A short questionnaire was used to record symptoms at the time of testing, and blood samples were obtained from 2721 of them for detection of SARS-CoV-2 specific antibodies. Results: The overall sensitivity of the SD-Biosensor Ag kit was 36.5% and the Abbott Ag test was 50.76%. The Abbott Ag test showed specificity of 99.4% and the SD-Biosensor Ag test 97.5%. At Ct values  30 (46.1 to 82.9%). 32.1% of those who gave a positive result with the SD-Biosensor Ag test and 26.3% of those who gave positive results with the Abbott Ag test had SARS-CoV-2 antibodies at the time of detection. Conclusions: Both rapid Ag tests appeared to be highly sensitive in detecting individuals at lower Ct values, in a community setting in Sri Lanka, but it will be important to further establish the relationship to infectivity

    Transmission dynamics, clinical characteristics and sero-surveillance in the COVID-19 outbreak in a population dense area of Colombo, Sri Lanka April- May 2020

    Get PDF
    Background The transmission dynamics of SARS-CoV-2 varies depending on social distancing measures, circulating SARS-CoV-2 variants, host factors and other environmental factors. We sought to investigate the clinical and epidemiological characteristics of a SARS-CoV-2 outbreak that occurred in a highly dense population area in Colombo, Sri Lanka from April to May 2020. Methodology/principal findings We carried out RT-qPCR for SARS-CoV2, assessed the SARS-CoV-2 specific total and neutralizing antibodies (Nabs) in a densely packed, underserved settlement (n = 2722) after identification of the index case on 15th April 2020. 89/2722 individuals were detected as infected by RT-qPCR with a secondary attack rate among close contacts being 0.077 (95% CI 0.063–0.095). Another 30 asymptomatic individuals were found to have had COVID-19 based on the presence of SARS-CoV-2 specific antibodies. However, only 61.5% of those who were initially seropositive for SARS-CoV-2 had detectable total antibodies at 120 to 160 days, while only 40.6% had detectable Nabs. 74/89 (83.1%) of RT-qPCR positive individuals were completely asymptomatic and all 15 (16.9%) who experienced symptoms were classified as having a mild illness. 18 (20.2%) were between the ages of 61 to 80. 11/89 (12.4%) had diabetes, 8/89 (9%) had cardiovascular disease and 4 (4.5%) had asthma. Of the two viruses that were sequenced and were of the B.1 and B.4 lineages with one carrying the D614G mutation. Discussion/conclusion Almost all infected individuals developed mild or asymptomatic illness despite the presence of comorbid illnesses. Since the majority of those who were in this underserved settlement were not infected despite circulation of the D614G variant, it would be important to further study environmental and host factors that lead to disease severity and transmission

    Kinetics of immune responses to SARS-CoV-2 proteins in individuals with varying severity of infection and following a single dose of the AZD1222

    Get PDF
    To characterize the IgG and IgA responses to different SARS-CoV-2 proteins, we investigated the antibody responses to SARS-CoV-2 following natural infection and following a single dose of AZD1222 (Covishield), in Sri Lankan individuals. The IgG and IgA responses were assessed to S1, S2, RBD, and N proteins in patients at 4 weeks and 12 weeks since the onset of illness or following vaccination. Antibodies to the receptor-binding domain of SARS-CoV-2 wild type (WT), α, β, and λ and ACE2 (Angiotensin Converting Enzyme 2) receptor blocking antibodies were also assessed in these cohorts. For those with mild illness and in vaccines, the IgG responses to S1, S2, RBD, and N protein increased from 4 weeks to 12 weeks, while it remained unchanged in those with moderate/severe illness. In the vaccines, IgG antibodies to the S2 subunit had the highest significant rise (P < 0.0001). Vaccines had several-fold lower IgA antibodies to all the SARS-CoV-2 proteins tested than those with natural infection. At 12 weeks, the haemagglutination test (HAT) titres were significantly lower to the α in vaccines and significantly lower in those with mild illness and in vaccines to β and for λ. No such difference was seen in those with moderate/severe illness. Vaccines had significantly less IgA to SARS-CoV-2, but comparable IgG responses those with natural infection. However, following a single dose vaccines had reduced antibody levels to the VOCs, which further declined with time, suggesting the need to reduce the gap between the two doses, in countries experiencing outbreaks due to VOCs

    Kinetics of immune responses to the AZD1222/Covishield vaccine with varying dose intervals in Sri Lankan individuals

    Get PDF
    Background To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. Methods Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2-blocking antibodies (ACE2-blocking Abs), antibodies to the receptor-binding domain (RBD) of variants of concern (VOC), and ex vivo T cell responses were assessed in a subcohort. Results All individuals (100%) had SARS-CoV-2-specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2-blocking Abs. There was no difference in antibody titers or positivity rates in different age groups in both cohorts. The ACE2-blocking Abs (p Conclusions Both dosing schedules resulted in high antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose

    Comparison of the immunogenicity of five COVID-19 vaccines in Sri Lanka

    Get PDF
    To determine the antibody responses elicited by different vaccines against SARS-CoV-2, we compared antibody responses in individuals 3 months post-vaccination in those who had received different vaccines in Sri Lanka. Abs to the receptor binding domain (RBD) of the ancestral (wild type) virus (WT) as well as to variants of concern (VoCs), and ACE2 blocking Abs, were assessed in individuals vaccinated with Moderna (n = 225), Sputnik V (n = 128) or Sputnik light (n = 184) and the results were compared with previously reported data on Sinopharm and AZD1222 vaccinees. A total of 99.5% of Moderna, >94% of AZD1222 or Sputnik V and >70% of Sputnik light, >60% of Sinopharm vaccine recipients, had a positive response to ACE2 blocking antibodies. The ACE2 blocking antibody levels were highest to lowest was Moderna > Sputnik V/AZD1222 (had equal levels) > Sputnik light > Sinopharm. All Moderna recipients had antibodies to the RBD of WT, alpha and beta, while positivity rates for delta variant was 80%. The positivity rates for Sputnik V vaccinees for the WT and VoCs were higher than for AZD1222 vaccinees while those who received Sinopharm had the lowest positivity rates (<16.7%). The total antibodies to the RBD were highest for the Sputnik V and AZD1222 vaccinees. The Moderna vaccine elicited the highest ACE2 blocking antibody levels followed by Sputnik V/AZD1222, while those who received Sinopharm had the lowest levels. These findings highlight the need for further studies to understand the effects on clinical outcomes

    Comparison of the kinetics and magnitude of antibody responses to different SARS-CoV-2 proteins in Sinopharm/BBIBP-CorV vaccinees following the BNT162b2 booster or natural infection.

    No full text
    The kinetics and magnitude of antibody responses to different proteins of the SARS-CoV-2 virus in Sinopharm/BBIBP-CorV vaccinees has not been previously studied. Therefore, we investigated antibody responses to different SARS-CoV-2 proteins at 2 weeks, 3 months, and 6 months post-second dose in previously infected (n = 20) and uninfected (n = 20) Sinopharm/BBIBP-CorV vaccinees. The IgG antibodies to the S, S1 and S2 and N were several folds higher in those who had natural infection compared to uninfected individuals at all time points. We then compared the persistence of antibody responses and effect of natural omicron infection or BNT162b2 booster in Sinopharm/BBIBP-CorV vaccinees. We measured the total antibodies to the RBD, ACE2 blocking antibodies and antibody responses to different SARS-CoV-2 proteins in Sinopharm vaccinees at 7 months post second dose, including those who remained uninfected and not boosted (n = 21), or those who had previous infection and who did not obtain the booster (n = 17), those who were not infected, but who received a BNT162b2 booster (n = 30), or those who did not receive the booster but were infected with omicron (n = 29). At 7 months post second dose uninfected (no booster) had the lowest antibody levels to the RBD, while omicron infected vaccinees showed significantly higher anti-RBD antibody levels (p = 0.04) than vaccinees who received the booster. Only 3/21 cohort A (14.3%) had ACE2 blocking antibodies, while higher frequencies were observed in naturally infected individuals (100%), those who received the booster (18/21, 85.7%), and omicron infected individuals (100%). Pre-vaccination, naturally infected had the highest antibody levels to the N protein. These data suggest that those previously infected Sinopharm/BBIBP-CorV vaccinees have a robust antibody response, 7 months post vaccination, while vaccinees who were naturally infected with omicron had a similar immune response to those who received the booster. It will be important to investigate implications for subsequent clinical protection

    Immune responses to a single dose of the AZD1222/Covishield vaccine in health care workers

    No full text
    Several COVID-19 vaccines have received emergency approval. Here we assess the immunogenicity of a single dose of the AZD1222 vaccine, at one month, in a cohort of health care workers (HCWs) (629 naïve and 26 previously infected). 93.4% of naïve HCWs seroconverted, irrespective of age and gender. Haemagglutination test for antibodies to the receptor binding domain (RBD), surrogate neutralization assay (sVNT) and ex vivo IFNγ ELISpot assays were carried out in a sub-cohort. ACE2 blocking antibodies (measured by sVNT) were detected in 67/69 (97.1%) of naïve HCWs. Antibody levels to the RBD of the wild-type virus were higher than to RBD of B.1.1.7, and titres to B.1.351 were very low. Ex vivo T cell responses were observed in 30.8% to 61.7% in naïve HCWs. Previously infected HCWs, developed significantly higher (p
    corecore