2 research outputs found

    Assessment of Transboundary PM2.5 from Biomass Burning in Northern Thailand Using the WRF-Chem Model

    No full text
    Air pollution, particularly PM2.5, poses a significant environmental and public health concern, particularly in northern Thailand, where elevated PM2.5 levels are prevalent during the dry season (January–May). This study examines the influx and patterns of transboundary biomass burning PM2.5 (TB PM2.5) in this region during the 2019 dry season using the WRF-Chem model. The model’s reliability was confirmed through substantial correlations between model outputs and observations from the Pollution Control Department (PCD) of Thailand at 10 monitoring stations. The findings indicate that TB PM2.5 significantly influences local PM2.5 levels, often surpassing contributions from local sources. The influx of TB PM2.5 began in January from southern directions, intensifying and shifting northward, peaking in March with the highest TB PM2.5 proportions. Elevated levels persisted through April and declined in May. Border provinces consistently exhibited higher TB PM2.5 concentrations, with Chiang Rai province showing the highest average proportion, reaching up to 45%. On days when PM2.5 levels were classified as ‘Unhealthy for Sensitive Groups’ or ‘Unhealthy’, TB PM2.5 contributed at least 50% to the total PM2.5 at all stations. Notably, stations in Chiang Rai and Nan showed detectable TB PM2.5 even at ‘Very Unhealthy’ levels, underscoring the significant impact of TB PM2.5 in the northern border areas. Effective mitigation of PM2.5-related health risks requires addressing PM2.5 sources both within and beyond Thailand’s borders

    āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ‚āļ­āļ‡āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ āļēāļ„āđ€āļŦāļ™āļ·āļ­āļ•āļ­āļ™āļšāļ™āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđāļĨāļ°āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ‚āļ”āļĒāļĢāļ­āļšāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5: āļāļĢāļ“āļĩāļĻāļķāļāļĐāļēāļŠāđˆāļ§āļ‡āļĪāļ”āļđāļŦāļĄāļ­āļāļ„āļ§āļąāļ™ āļ›āļĩ āļž.āļĻ. 2562 Relationship of Fire Hotspot, PM2.5 Concentrations, and Surrounding Areas in Upper Northern Thailand: A Case S

    No full text
    āļāļēāļĢāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļĢāļīāļĄāļēāļ“āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ āļēāļ„āđ€āļŦāļ™āļ·āļ­āļ•āļ­āļ™āļšāļ™āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļŠāđˆāļ§āļ‡āļ§āļąāļ™āļ—āļĩāđˆ 1 āļĄāļāļĢāļēāļ„āļĄ – 31 āļžāļĪāļĐāļ āļēāļ„āļĄ āļž.āļĻ. 2562 āđ‚āļ”āļĒāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ›āļĢāļīāļĄāļēāļ“āđāļĨāļ°āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĻāļķāļāļĐāļēāđāļĨāļ°āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ‚āļ”āļĒāļĢāļ­āļš āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļ•āļēāļĄāđ€āļ§āļĨāļēāđāļĨāļ°āļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāļŠāļŦāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒ (r) āļ‚āļ­āļ‡āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āļāļąāļšāļ›āļĢāļīāļĄāļēāļ“āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļˆāļēāļāļ āļēāļžāļ–āđˆāļēāļĒāļ”āļēāļ§āđ€āļ—āļĩāļĒāļĄ āđāļĨāļ°āļ‚āđ‰āļ­āļĄāļđāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āļ›āļąāļˆāļˆāļąāļĒāļ—āļēāļ‡āļ­āļļāļ•āļļāļ™āļīāļĒāļĄāļ§āļīāļ—āļĒāļēāļˆāļēāļ 9 āļŠāļ–āļēāļ™āļĩ āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļē āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĻāļķāļāļĐāļēāļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āđ€āļžāļīāđˆāļĄāļŠāļđāļ‡āđƒāļ™āļŠāđˆāļ§āļ‡āļ—āļĩāđˆāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āļ­āļĒāļđāđˆāđƒāļ™āđ€āļāļ“āļ‘āđŒāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļŠāļļāļ‚āļ āļēāļž āđ‚āļ”āļĒāļžāļšāļŦāļ™āļēāđāļ™āđˆāļ™āļŠāļđāļ‡āļšāļĢāļīāđ€āļ§āļ“āļĢāļ­āļĒāļ•āđˆāļ­āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ” āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āđˆāļēāđāļĨāļ°āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļāļĐāļ•āļĢāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡ āļŠāđˆāļ§āļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ‚āļ”āļĒāļĢāļ­āļšāļžāļšāļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļ™āļēāđāļ™āđˆāļ™āļŠāļđāļ‡āļšāļĢāļīāđ€āļ§āļ“āđƒāļāļĨāđ‰āļāļąāļšāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĻāļķāļāļĐāļēāđƒāļ™āļ—āļēāļ‡āđ€āļŦāļ™āļ·āļ­ āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āļ‚āļ­āļ‡āļŠāļ–āļēāļ™āļĩāļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāļĄāļĩāļ„āđˆāļēāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ‚āļ”āļĒāļĢāļ­āļšāļĄāļēāļāļāļ§āđˆāļēāļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ” āļ‹āļķāđˆāļ‡āđ€āļŦāđ‡āļ™āđ„āļ”āđ‰āļˆāļēāļāļ„āđˆāļē r āļ—āļĩāđˆāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļ™āđƒāļ™āđ€āļāļ“āļ‘āđŒāļ›āļēāļ™āļāļĨāļēāļ‡-āļŠāļđāļ‡ (r = 0.5 – 0.7) āļŠāđˆāļ§āļ™āļˆāļļāļ”āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āđ€āļŠāđˆāļ™āļāļąāļ™ āļ”āđ‰āļ§āļĒāļ„āđˆāļē r āļ—āļĩāđˆāļ™āđ‰āļ­āļĒāļāļ§āđˆāļē āļ‹āļķāđˆāļ‡āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ–āļķāļ‡āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āđāļŦāļĨāđˆāļ‡āļāļģāđ€āļ™āļīāļ”āļˆāļēāļāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ‚āļ”āļĒāļĢāļ­āļšāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļąāđ‰āļ™ āđ† āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ PM2.5 āđƒāļ™āļŠāļ–āļēāļ™āļĩāļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāđāļ›āļĢāļœāļāļœāļąāļ™āļāļąāļšāļ›āļąāļˆāļˆāļąāļĒāļ›āļĢāļīāļĄāļēāļ“āļ™āđ‰āļģāļāļ™āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĨāļĄThe objective of this research is to study the effects of thermal hotspots on PM2.5 concentrations in the upper northern of Thailand during 1 January–31 May 2019. The number and the density of fire hotspots of the examined and adjacent areas was investigated. The time-series relationships between PM2.5 concentrations, the number of satellite-based fire hotspots, and meteorological factors derived from 9 stations were analyzed. As results, the greater number of hotspots was correlated with increased levels of PM2.5 concentrations. Such conditions exhibit considerable impacts on health. High PM2.5 concentrations were specifically found around provincial boundaries, in forests, agricultural areas, as well as in Thailand’s neighboring countries. As for the surrounding areas, the areas that have high density of fire hotspots were found near investigated areas in the north region. Provincial fire hotspots were correlated to high PM2.5 concentration, with a lower r-value. The thermal hotspot locations from the surrounding areas have effects on provincial PM2.5 concentrations. Finally, the effect of meteorological factors on PM2.5 concentrations was analyzed. As a result, precipitation and wind speed have inverse effects on PM2.5 concentrations
    corecore