2 research outputs found
Assessment of Transboundary PM2.5 from Biomass Burning in Northern Thailand Using the WRF-Chem Model
Air pollution, particularly PM2.5, poses a significant environmental and public health concern, particularly in northern Thailand, where elevated PM2.5 levels are prevalent during the dry season (JanuaryâMay). This study examines the influx and patterns of transboundary biomass burning PM2.5 (TB PM2.5) in this region during the 2019 dry season using the WRF-Chem model. The modelâs reliability was confirmed through substantial correlations between model outputs and observations from the Pollution Control Department (PCD) of Thailand at 10 monitoring stations. The findings indicate that TB PM2.5 significantly influences local PM2.5 levels, often surpassing contributions from local sources. The influx of TB PM2.5 began in January from southern directions, intensifying and shifting northward, peaking in March with the highest TB PM2.5 proportions. Elevated levels persisted through April and declined in May. Border provinces consistently exhibited higher TB PM2.5 concentrations, with Chiang Rai province showing the highest average proportion, reaching up to 45%. On days when PM2.5 levels were classified as âUnhealthy for Sensitive Groupsâ or âUnhealthyâ, TB PM2.5 contributed at least 50% to the total PM2.5 at all stations. Notably, stations in Chiang Rai and Nan showed detectable TB PM2.5 even at âVery Unhealthyâ levels, underscoring the significant impact of TB PM2.5 in the northern border areas. Effective mitigation of PM2.5-related health risks requires addressing PM2.5 sources both within and beyond Thailandâs borders
āļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļāļāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāđāļāļāļ·āđāļāļāļĩāđāļ āļēāļāđāļŦāļāļ·āļāļāļāļāļāļāļāļāļāļāļĢāļ°āđāļāļĻāđāļāļĒāđāļĨāļ°āļāļ·āđāļāļāļĩāđāđāļāļĒāļĢāļāļāļāđāļāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5: āļāļĢāļāļĩāļĻāļķāļāļĐāļēāļāđāļ§āļāļĪāļāļđāļŦāļĄāļāļāļāļ§āļąāļ āļāļĩ āļ.āļĻ. 2562 Relationship of Fire Hotspot, PM2.5 Concentrations, and Surrounding Areas in Upper Northern Thailand: A Case S
āļāļēāļĢāļ§āļīāļāļąāļĒāļāļĩāđāļĄāļĩāļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđāđāļāļ·āđāļāļĻāļķāļāļĐāļēāļāļĨāļāļĢāļ°āļāļāļāļāļāļāļĢāļīāļĄāļēāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļāđāļāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āđāļāļāļ·āđāļāļāļĩāđāļ āļēāļāđāļŦāļāļ·āļāļāļāļāļāļāļāļāļāļāļĢāļ°āđāļāļĻāđāļāļĒ āļāđāļ§āļāļ§āļąāļāļāļĩāđ 1 āļĄāļāļĢāļēāļāļĄ â 31 āļāļĪāļĐāļ āļēāļāļĄ āļ.āļĻ. 2562 āđāļāļĒāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĢāļīāļĄāļēāļāđāļĨāļ°āļāļ§āļēāļĄāļŦāļāļēāđāļāđāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāđāļāļāļ·āđāļāļāļĩāđāļĻāļķāļāļĐāļēāđāļĨāļ°āļāļ·āđāļāļāļĩāđāđāļāļĒāļĢāļāļ āļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļāļēāļĄāđāļ§āļĨāļēāđāļĨāļ°āļŠāļąāļĄāļāļĢāļ°āļŠāļīāļāļāļīāđāļŠāļŦāļŠāļąāļĄāļāļąāļāļāđ (r) āļāļāļāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āļāļąāļāļāļĢāļīāļĄāļēāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļāļēāļāļ āļēāļāļāđāļēāļĒāļāļēāļ§āđāļāļĩāļĒāļĄ āđāļĨāļ°āļāđāļāļĄāļđāļĨāļāļĢāļ§āļāļ§āļąāļāļāļąāļāļāļąāļĒāļāļēāļāļāļļāļāļļāļāļīāļĒāļĄāļ§āļīāļāļĒāļēāļāļēāļ 9 āļŠāļāļēāļāļĩ āļāļĨāļāļēāļĢāļ§āļīāļāļąāļĒāļāļāļ§āđāļē āļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāđāļāļāļ·āđāļāļāļĩāđāļĻāļķāļāļĐāļēāļĄāļĩāļāļĢāļīāļĄāļēāļāđāļāļīāđāļĄāļŠāļđāļāđāļāļāđāļ§āļāļāļĩāđāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āļāļĒāļđāđāđāļāđāļāļāļāđāļŠāđāļāļāļĨāļāļĢāļ°āļāļāļāđāļāļŠāļļāļāļ āļēāļ āđāļāļĒāļāļāļŦāļāļēāđāļāđāļāļŠāļđāļāļāļĢāļīāđāļ§āļāļĢāļāļĒāļāđāļāļĢāļ°āļŦāļ§āđāļēāļāļāļąāļāļŦāļ§āļąāļ āļāļ·āđāļāļāļĩāđāļāđāļēāđāļĨāļ°āļāļ·āđāļāļāļĩāđāđāļāļĐāļāļĢāđāļāļĨāđāđāļāļĩāļĒāļ āļŠāđāļ§āļāļāļ·āđāļāļāļĩāđāđāļāļĒāļĢāļāļāļāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļŦāļāļēāđāļāđāļāļŠāļđāļāļāļĢāļīāđāļ§āļāđāļāļĨāđāļāļąāļāļāļ·āđāļāļāļĩāđāļĻāļķāļāļĐāļēāđāļāļāļēāļāđāļŦāļāļ·āļ āļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āļāļāļāļŠāļāļēāļāļĩāļŠāđāļ§āļāđāļŦāļāđāļĄāļĩāļāđāļēāļŠāļāļāļāļĨāđāļāļāļāļąāļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļāļāļāļāļ·āđāļāļāļĩāđāđāļāļĒāļĢāļāļāļĄāļēāļāļāļ§āđāļēāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļāļāļāļāļąāļāļŦāļ§āļąāļ āļāļķāđāļāđāļŦāđāļāđāļāđāļāļēāļāļāđāļē r āļāļĩāđāļŠāļāļāļāļĨāđāļāļāļāļąāļāđāļāđāļāļāļāđāļāļēāļāļāļĨāļēāļ-āļŠāļđāļ (r = 0.5 â 0.7) āļŠāđāļ§āļāļāļļāļāļāļ§āļēāļĄāļĢāđāļāļāļāļāļāļāļąāļāļŦāļ§āļąāļāļŠāļāļāļāļĨāđāļāļāļāļąāļāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āđāļāđāļāļāļąāļ āļāđāļ§āļĒāļāđāļē r āļāļĩāđāļāđāļāļĒāļāļ§āđāļē āļāļķāđāļāđāļŠāļāļāđāļŦāđāđāļŦāđāļāļāļķāļāļāļīāļāļāļīāļāļĨāļāļāļāđāļŦāļĨāđāļāļāļģāđāļāļīāļāļāļēāļāļāļ·āđāļāļāļĩāđāđāļāļĒāļĢāļāļāļāļĩāđāļŠāđāļāļāļĨāļāđāļāļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļāđāļāļāļ·āđāļāļāļĩāđāļāļąāļāļŦāļ§āļąāļāļāļąāđāļ āđ āļāđāļēāļāļ§āļēāļĄāđāļāđāļĄāļāđāļ PM2.5 āđāļāļŠāļāļēāļāļĩāļŠāđāļ§āļāđāļŦāļāđāđāļāļĢāļāļāļāļąāļāļāļąāļāļāļąāļāļāļąāļĒāļāļĢāļīāļĄāļēāļāļāđāļģāļāļāđāļĨāļ°āļāļ§āļēāļĄāđāļĢāđāļ§āļĨāļĄThe objective of this research is to study the effects of thermal hotspots on PM2.5 concentrations in the upper northern of Thailand during 1 Januaryâ31 May 2019. The number and the density of fire hotspots of the examined and adjacent areas was investigated. The time-series relationships between PM2.5 concentrations, the number of satellite-based fire hotspots, and meteorological factors derived from 9 stations were analyzed. As results, the greater number of hotspots was correlated with increased levels of PM2.5 concentrations. Such conditions exhibit considerable impacts on health. High PM2.5 concentrations were specifically found around provincial boundaries, in forests, agricultural areas, as well as in Thailandâs neighboring countries. As for the surrounding areas, the areas that have high density of fire hotspots were found near investigated areas in the north region. Provincial fire hotspots were correlated to high PM2.5 concentration, with a lower r-value. The thermal hotspot locations from the surrounding areas have effects on provincial PM2.5 concentrations. Finally, the effect of meteorological factors on PM2.5 concentrations was analyzed. As a result, precipitation and wind speed have inverse effects on PM2.5 concentrations