25 research outputs found

    Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer

    Get PDF
    Numerical simulations of the linear and nonlinear two-dimensional Navier–Stokes equations, and linear stability theory are used to parametrically investigate hypersonic boundary layers over ultrasonic absorptive coatings. The porous coatings consist of a uniform array of rectangular pores (slots) with a range of porosities and pore aspect ratios. For the numerical simulations, temporally (rather than spatially) evolving boundary layers are considered and we provide evidence that this approximation is appropriate for slowly growing second-mode instabilities. We consider coatings operating in the typical regime where the pores are relatively deep and acoustic waves and second-mode instabilities are attenuated by viscous effects inside the pores, as well as regimes with phase cancellation or reinforcement associated with reflection of acoustic waves from the bottom of the pores. These conditions are defined as attenuative and cancellation/reinforcement regimes, respectively. The focus of the present study is on the cases which have not been systematically studied in the past, namely the reinforcement regime (which represents a worst-case scenario, i.e. minimal second-mode damping) and the cancellation regime (which corresponds to the configuration with the most potential improvement). For all but one of the cases considered, the linear simulations show good agreement with the results of linear instability theory that employs an approximate porous-wall boundary condition, and confirm that the porous coating stabilizing performance is directly related to their acoustic scattering performance. A particular case with relatively shallow pores and very high porosity showed the existence of a shorter-wavelength instability that was not initially predicted by theory. Our analysis shows that this new mode is associated with acoustic resonances in the pores and can be more unstable than the second mode. Modifications to the theoretical model are suggested to account for the new mode and to provide estimates of the porous coating parameters that avoid this detrimental instability. Finally, nonlinear simulations confirm the conclusions of the linear analysis; in particular, we did not observe any tripping of the boundary layer by small-scale disturbances associated with individual pores

    Alternate Designs of Ultrasonic Absorptive Coatings for Hypersonic Boundary Layer Control

    Get PDF
    Numerical simulations of the linear and nonlinear two-dimensional Navier-Stokes equations are used to parametrically investigate hypersonic boundary layers over ultrasonic absorptive coatings consisting of a uniform array of rectangular pores (slots) with a range of porosities and pore aspect ratios. Based on our previous work, we employ a temporally evolving approximation appropriate to slowly-growing second-mode instabilities. We consider coatings operating in attenuative regimes where the pores are relatively deep and acoustic waves and second mode instabilities are attenuated by viscous effects inside the pores, as well as cancellation/reinforcement regimes with alternating regions of local minima and maxima of the coating acoustic absorption, depending on the frequency of the acoustic waves. The focus is on reinforcement cases which represent a worst case scenario (minimal second-mode damping). For all but one of the cases considered, the linear simulations confirm the results of linear instability theory that employs an approximate porous-wall boundary condition. A particular case with a relatively shallow cavities and very high porosity showed the existence of a shorter wavelength instability that is not predicted by theory. Finally, nonlinear simulations of the same cases led to the same conclusions as linear analysis; in particular, we did not observe any "tripping" of the boundary layer by small scale disturbances associated with individual pores

    An Analysis of Dispersion and Dissipation Properties of Hermite Methods and Its Application to Direct Numerical Simulation of Jet Noise

    Get PDF
    The dissipative and dispersive properties of Hermite methods are analyzed by a modified equation approach and by direct computation of the dispersion relations for the discrete modes of the scheme. The two approaches lead to the same results for well-resolved modes but are quantitatively different at the finest scales. The resolution requirements, obtained from the analysis, for Hermite schemes are compared to those of typical high-resolution difference formulas. The results from the analysis are also used to predict the resolution requirements for a simulation at Re ∼ 3600. The validity of the prediction is confirmed by numerical experiments

    Hermite Methods for Aeroacoustics: Recent Progress

    Get PDF
    We present recent developments on Hermite methods for aeroacoustic simulations including time-stepping methods, hybridization with discontinuous Galerkin methods for handling of boundary conditions and adaptive implementations. By scaling studies reported below we show that the features unique to Hermite methods have promise to enable efficient exploitation of modern petascale architectures. We also present preliminary computations of turbulent jet noise obtained with the current implementation of our compressible Navier-Stokes solver

    Instability of Hypersonic Boundary Layer on a Wall with Resonating Micro-Cavities

    Get PDF
    Ultrasonically absorptive coatings (UAC) can stabilize the Mack second mode and thereby increase the laminar run on configurations where laminar-turbulent transition is second-mode dominated. Theory indicates that the stabilization effect can be essentially enhanced by increasing the UAC porosity. However, direct numerical simulations (DNS) showed that coatings having closely spaced grooves can trigger a new instability whose growth rate can be larger than that of Mack' second mode. The nature of the new instability is investigated theoretically and numerically. 2D linear DNS and stability analysis are performed for the temporally evolving boundary layer on a flat wall at the outer-flow Mach number 6. The wall is covered by UAC comprising equally-spaced spanwise grooves. It is shown that the new mode is associated with acoustic resonances in the grooves. Disturbance fields near mouths of resonating cavities are coupled such that the boundary-layer disturbance is decelerated and becomes unstable. To avoid this detrimental effect the coating should have sufficiently small porosity and/or narrow pores of sufficiently small aspect ratio. Restrictions on these parameters can be estimated using the linear stability theory with the impedance boundary conditions

    Pan-cancer analysis reveals recurrent BCAR4 gene fusions across solid tumors

    Get PDF
    UNLABELLED: Chromosomal rearrangements often result in active regulatory regions juxtaposed upstream of an oncogene to generate an expressed gene fusion. Repeated activation of a common downstream partner-with differing upstream regions across a patient cohort-suggests a conserved oncogenic role. Analysis of 9,638 patients across 32 solid tumor types revealed an annotated long noncoding RNA (lncRNA), Breast Cancer Anti-Estrogen Resistance 4 (BCAR4), was the most prevalent, uncharacterized, downstream gene fusion partner occurring in 11 cancers. Its oncogenic role was confirmed using multiple cell lines with endogenous BCAR4 gene fusions. Furthermore, overexpressing clinically prevalent BCAR4 gene fusions in untransformed cell lines was sufficient to induce an oncogenic phenotype. We show that the minimum common region to all gene fusions harbors an open reading frame that is necessary to drive proliferation. IMPLICATIONS: BCAR4 gene fusions represent an underappreciated class of gene fusions that may have biological and clinical implications across solid tumors

    Integrating imaging and RNA-seq improves outcome prediction in cervical cancer

    Get PDF
    Approaches using a single type of data have been applied to classify human tumors. Here we integrate imaging features and transcriptomic data using a prospectively collected tumor bank. We demonstrate that increased maximum standardized uptake value on pretreatment 18F-fluorodeoxyglucose-positron emission tomography correlates with epithelial-to-mesenchymal transition (EMT) gene expression. We derived and validated 3 major molecular groups, namely squamous epithelial, squamous mesenchymal, and adenocarcinoma, using prospectively collected institutional (n = 67) and publicly available (n = 304) data sets. Patients with tumors of the squamous mesenchymal subtype showed inferior survival outcomes compared with the other 2 molecular groups. High mesenchymal gene expression in cervical cancer cells positively correlated with the capacity to form spheroids and with resistance to radiation. CaSki organoids were radiation-resistant but sensitive to the glycolysis inhibitor, 2-DG. These experiments provide a strategy for response prediction by integrating large data sets, and highlight the potential for metabolic therapy to influence EMT phenotypes in cervical cancer
    corecore