105 research outputs found

    First-principles study of Ti-doped sodium alanate surfaces

    Full text link
    We have performed first-principles calculations of thick slabs of Ti-doped sodium alanate (NaAlH_4), which allows to study the system energetics as the dopant progresses from the surface to the bulk. Our calculations predict that Ti stays on the surface, substitutes for Na, and attracts a large number of H atoms to its vicinity. Molecular dynamics simulations suggest that the most likely product of the Ti-doping is the formation of H-rich TiAl_n (n>1) compounds on the surface, and hint at the mechanism by which Ti enhances the reaction kinetics of NaAlH_4.Comment: 3 pages with 3 postscript figures embedded. Uses REVTEX4 and graphicx macros. More information at http://www.ncnr.nist.gov/staff/taner/alanates

    Effective-Hamiltonian modeling of external pressures in ferroelectric perovskites

    Full text link
    The phase-transition sequence of a ferroelectric perovskite such as BaTiO_3 can be simulated by computing the statistical mechanics of a first-principles derived effective Hamiltonian [Zhong, Vanderbilt and Rabe, Phys. Rev. Lett. 73, 1861 (1994)]. Within this method, the effect of an external pressure (in general, of any external field) can be studied by considering the appropriate "enthalpy" instead of the effective Hamiltonian itself. The legitimacy of this approach relies on two critical assumptions that, to the best of our knowledge, have not been adequately discussed in the literature to date: (i) that the zero-pressure relevant degrees of freedom are still the only relevant degrees of freedom at finite pressures, and (ii) that the truncation of the Taylor expansion of the energy considered in the effective Hamiltonian remains a good approximation at finite pressures. Here we address these issues in detail and present illustrative first-principles results for BaTiO_3. We also discuss how to construct effective Hamiltonians in cases in which these assumptions do not hold.Comment: 5 pages, with 2 postscript figures embedded. Proceedings of "Fundamental Physics of Ferroelectrics, 2002", R. Cohen and T. Egami, eds. (AIP, Melville, New York, 2002). Also available at http://www.physics.rutgers.edu/~dhv/preprints/ji_effp/index.htm

    Structurally Triggered Metal-Insulator Transition in Rare-Earth Nickelates

    Full text link
    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO3, they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural and magnetic properties. Here, we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the evolution of the metal-insulator transition in terms of the $R cations and rationalising how to tune this transition by acting on oxygen rotation motions.Comment: Submitted in Nature Communicatio

    Giant Direct and Inverse Electrocaloric Effects in Multiferroic Thin Films

    Full text link
    Refrigeration systems based on compression of greenhouse gases are environmentally threatening and cannot be scaled down to on-chip dimensions. In the vicinity of a phase transition caloric materials present large thermal responses to external fields, which makes them promising for developing alternative solid-state cooling devices. Electrocaloric effects are particularly well-suited for portable refrigeration applications; however, most electrocaloric materials operate best at non-ambient temperatures or require the application of large electric fields. Here, we predict that modest electric fields can yield giant room-temperature electrocaloric effects in multiferroic BiCoO3_{3} (BCO) thin films. Depending on the orientation of the applied field the resulting electrocaloric effect is either direct (heating) or inverse (cooling), which may enable the design of enhanced refrigeration cycles. We show that spin-phonon couplings and phase competition are the underlying causes of the disclosed caloric phenomena. The dual electrocaloric response of BCO thin films can be effectively tuned by means of epitaxial strain and we anticipate that other control strategies like chemical substitution are also possible
    • …
    corecore