71 research outputs found

    The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates

    Get PDF
    Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio

    Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy

    Get PDF
    AIMS: Disrupted intermediary metabolism may contribute to the adverse pregnancy outcomes in women with very severe obesity. Our aim was to study metabolism in such pregnancies. METHODS: We recruited a longitudinal cohort of very severely obese (n = 190) and lean (n = 118) glucose-tolerant women for anthropometric and metabolic measurements at early, mid and late gestation and postpartum. In case–control studies of very severely obese and lean women we measured glucose and glycerol turnover during low- and high-dose hyperinsulinaemic–euglycaemic clamps (HEC) at early and late pregnancy and in non-pregnant women (each n = 6–9) and body fat distribution by MRI in late pregnancy (n = 10/group). RESULTS: Although greater glucose, insulin, NEFA and insulin resistance (HOMA-IR), and greater weight and % fat mass (FM) was observed in very severely obese vs lean participants, the degree of worsening was attenuated in the very severely obese individuals with advancing gestation, with no difference in triacylglycerol (TG) concentrations between very severely obese and lean women at term. Enhanced glycerol production was observed in early pregnancy only in very severely obese individuals, with similar intrahepatic FM in very severely obese vs lean women by late gestation. Offspring from obese mothers were heavier (p = 0.04). CONCLUSIONS/INTERPRETATION: Pregnancies complicated by obesity demonstrate attenuation in weight gain and insulin resistance compared with pregnancies in lean women. Increased glycerol production is confined to obese women in early pregnancy and obese and lean individuals have similar intrahepatic FM by term. When targeting maternal metabolism to treat adverse pregnancy outcomes, therapeutic intervention may be most effective applied early in pregnancy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3708-3) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake

    No full text
    This article is free to read on the publishers website A new halophilic sulfate-reducing bacterium, strain GSL-But2T, was isolated from surface sediment of the Southern arm of the Great Salt Lake, UT, USA. organism grew with a number of straight-chain fatty acids (C4-C16), 2-methylbutyrate, L-alanine and pyruvate as electron donors. Butyrate was oxidized incompletely to acetate. Sulfate, but not sulfite or thiosulfate, serv as an electron acceptor. Growth was observed between 2 and 19% (w/v) NaCl with an optimum at 4-5% (w/v) NaCl. The optimal temperature and pH for growth were around 34°C and pH 6.5-7.3, respectively. The generation time under optimal conditions in defined medium was around 28 h, compared to 20 h in complex medium containing yeast extract. The G+C content was 35.0 mol%. 16S rRNA gene sequence analysis revealed that strain GSL-But2Tbelongs to the family Desulfobacteriaceae within the delta-subclass of the Proteobacteria and suggested that strain GSL-But2Trepresents a member of new genus. The name Desulfocella halophila gen. nov., sp. nov. is proposed for this organism. The type strain of D. halophila is strain GSL-But2T(= DSM 117 = ATCC 700426T)
    corecore