11 research outputs found
Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naĂŻve and memory WT1âspecific CD8+ T cells
Objectives
Vaccines that prime Wilms' tumor 1 (WT1)âspecific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The Câtype lectinâlike receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ Tâcell responses. We developed a new vaccine comprising a human antiâCLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naĂŻve and memory WT1âspecific CD8+ T cells.
Methods
WT1 was genetically fused to antibodies specific for human CLEC9A, DECâ205 or ÎČâgalactosidase (untargeted control). Activation of WT1âspecific CD8+ Tâcell lines following crossâpresentation by CD141+ DCs was quantified by IFNÎł ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naĂŻve WT1âspecific CD8+ T cells, were used to investigate naĂŻve WT1âspecific CD8+ Tâcell priming.
Results
The CLEC9AâWT1 vaccine promoted crossâpresentation of WT1 epitopes to CD8+ T cells and mediated priming of naĂŻve CD8+ T cells more effectively than the DECâ205âWT1 and untargeted controlâWT1 vaccines.
Conclusions
Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Agâpresenting cells via DECâ205, suggesting that crossâpresentation by CD141+ DCs is sufficient for effective CD8+ Tâcell priming in humans. The CLEC9AâWT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR 3 and TLR 7/8 ligation
Mice reconstituted with human hematopoietic stem cells are valuable models to study aspects of the human immune system in vivo. We describe a humanized mouse model (hu mice) in which fully functional human CD141+ and CD1c+ myeloid and CD123+ plasmacytoid dendritic cells (DC) develop from human cord blood CD34+ cells in immunodeficient mice. CD141+ DC are the human equivalents of murine CD8+ /CD103+ DC which are essential for the induction of tumor-inhibitory cytotoxic T lymphocyte (CTL) responses, making them attractive targets to exploit for the development of new cancer immunotherapies. We used CD34+ -engrafted NSG-A2 mice to investigate activation of DC subsets by synthetic dsRNA or ssRNA analogues polyinosinic-polycytidylic acid/poly I:C and Resiquimod/R848, agonists for TLR3 and TLR8 respectively, both of which are expressed by CD141+ DC. Injection of hu mice with these agonists resulted in upregulation of costimulatory molecules CD80, CD83 and CD86 by CD141+ and CD1c+ DC alike, and their combination further enhanced expression of these molecules by both subsets. When combined, poly I:C and R848 enhanced serum levels of key cytokines associated with cross-presentation and the induction of CTL responses including IFN-α, IFN-ÎČ, IL-12 and CXCL10. These data advocate a combination of poly I:C and R848 TLR agonists as means of activating human DC for immunotherapy. This article is protected by copyright. All rights reserved
Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells
Dendritic cells (DC) initiate the differentiation of CD4+ helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4+ T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1ÎČ, IL-6, and IL-23, by human blood monocytes, CD1c+ DC, CD141+ DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4+ T cells. Human CD1c+ DC produced IL-12p70, IL-1ÎČ, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141+ DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c+ DC. Activated CD1c+ DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4+ T cells, characterized by high production of interferon-Îł, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c+ DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis
Targeting CLEC9A delivers antigen to human CD141<sup>+</sup> DC for CD4<sup>+</sup> and CD8<sup>+</sup> T cell recognition
DC-based vaccines that initiate T cell responses are well tolerated and have demonstrated efficacy for tumor immunotherapy, with the potential to be combined with other therapies. Targeting vaccine antigens (Ag) directly to the DCs in vivo is more effective than cell-based therapies in mouse models and is therefore a promising strategy to translate to humans. The human CD141(+) DCs are considered the most clinically relevant for initiating CD8(+) T cell responses critical for killing tumors or infected cells, and they specifically express the C-type lectin-like receptor CLEC9A that facilitates presentation of Ag by these DCs. We have therefore developed a human chimeric Ab that specifically targets CLEC9A on CD141(+) DCs in vitro and in vivo. These human chimeric Abs are highly effective at delivering Ag to DCs for recognition by both CD4(+) and CD8(+) T cells. Given the importance of these cellular responses for antitumor or antiviral immunity, and the superior specificity of anti-CLEC9A Abs for this DC subset, this approach warrants further development for vaccines
Recommended from our members
Human CLEC9A antibodies deliver NY-ESO-1 antigen to CD141+ dendritic cells to activate naĂŻve and memory NY-ESO-1-specific CD8+ T cells
BACKGROUND: Dendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DCs, the human cDC1 equivalent. CD141+ DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 (New York esophageal squamous cell carcinoma 1), to human CD141+ DCs. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1-specific naĂŻve and memory CD8+ T cells was examined and compared with a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DCs. METHODS: Human anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1-epitope-specific CD8+ T cells and reactivity of T cell responses in patients with melanoma were assessed by interferon Îł (IFNÎł) production following incubation of CD141+ DCs and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naĂŻve NY-ESO-1-specific CD8+ T cells were used to investigate naĂŻve T cell priming. T cell effector function was measured by expression of IFNÎł, MIP-1ÎČ, tumor necrosis factor and CD107a and by lysis of target tumor cells. RESULTS: CLEC9A-NY-ESO-1 antibodies (Abs) were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DCs for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in patients with melanoma. Moreover, CLEC9A-NY-ESO-1 induced priming of naĂŻve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro. CONCLUSIONS: These data advocate human CLEC9A-NY-ESO-1 Ab as an attractive strategy for specific targeting of CD141+ DCs to enhance tumor immunogenicity in NY-ESO-1-expressing malignancies
Recommended from our members
Human CLEC9A antibodies deliver NY-ESO-1 antigen to CD141+ dendritic cells to activate naĂŻve and memory NY-ESO-1-specific CD8+ T cells
Dendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DCs, the human cDC1 equivalent. CD141+ DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 (New York esophageal squamous cell carcinoma 1), to human CD141+ DCs. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1-specific naĂŻve and memory CD8+ T cells was examined and compared with a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DCs. Human anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1-epitope-specific CD8+ T cells and reactivity of T cell responses in patients with melanoma were assessed by interferon Îł (IFNÎł) production following incubation of CD141+ DCs and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naĂŻve NY-ESO-1-specific CD8+ T cells were used to investigate naĂŻve T cell priming. T cell effector function was measured by expression of IFNÎł, MIP-1ÎČ, tumor necrosis factor and CD107a and by lysis of target tumor cells. CLEC9A-NY-ESO-1 antibodies (Abs) were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DCs for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in patients with melanoma. Moreover, CLEC9A-NY-ESO-1 induced priming of naĂŻve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro. These data advocate human CLEC9A-NY-ESO-1 Ab as an attractive strategy for specific targeting of CD141+ DCs to enhance tumor immunogenicity in NY-ESO-1-expressing malignancies
Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies
Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies.
Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality.
Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001).
Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status