91 research outputs found

    Surface reactivity of amphibole asbestos. A comparison between crocidolite and tremolite

    Get PDF
    Among asbestos minerals, fibrous riebeckite (crocidolite) and tremolite share the amphibole structure but largely differ in terms of their iron content and oxidation state. In asbestos toxicology, iron-generated free radicals are largely held as one of the causes of asbestos malignant effect. With the aim of clarifying i) the relationship between Fe occurrence and asbestos surface reactivity, and ii) how free-radical generation is modulated by surface modifications of the minerals, UICC crocidolite and fibrous tremolite from Maryland were leached from 1 day to 1 month in an oxidative medium buffered at pH 7.4 to induce redox alterations and surface rearrangements that may occur in body fluids. Structural and chemical modifications and free radical generation were monitored by HR-TEM/EDS and spin trapping/EPR spectroscopy, respectively. Free radical yield resulted to be dependent on few specific Fe2+ and Fe3+ surface sites rather than total Fe content. The evolution of reactivity with time highlighted that low-coordinated Fe ions primarily contribute to the overall reactivity of the fibre. Current findings contribute to explain the causes of the severe asbestosinduced oxidative stress at molecular level also for iron-poor amphiboles, and demonstrate that asbestos have a sustained surface radical activity even when highly altered by oxidative leaching

    Surface reactivity of amphibole asbestos: A comparison between two tremolite samples with different surface area

    Get PDF
    Surface reactivity of a fibrous tremolite sample from Castelluccio Superiore (Italy) was investigated by means of free radical generation following incubation in H2O2solution buffered at pH 7.4, for several time points, ranging from 1 day to 1 month. Results obtained were compared with those of another fibrous tremolite sample (from Maryland, USA), with much smaller surface area. Structural, morphological, and chemical alterations induced on tremolite by incubation were investigated by HR-TEM/EDS. The generation of HO•and COO-•radicals following reaction of tremolite with H2O2or formate ion was investigated by spin trapping/EPR spectroscopy. The dissolution process and surface modification were slower for the Maryland sample, with lowest surface area. Surface modification indicated the occurrence of either low- or high-coordinated Fe centres on the surface, as well as the evolution of their nuclearity. In turn, iron centres determine the reactivity of the fibre surface and the yield of HO•and COO-•radical species. The evolution of radical reactivity over time was proved to be largely dependent on surface area, with the highest radical yield occurring for low-area tremolite incubated over long times. The experimental results obtained in this study as well as the comparison with previous studies further confirm that surface reactivity of mineral fibres and inorganic particles is not dependent on Fetotcontent per se, but is likely due to surface properties and occurrence of specific iron sites

    Antioxidant Activity of Silica-Based Bioactive Glasses

    Get PDF
    Bioactive glasses are the materials of choice in the field of bone regeneration. Antioxidant properties of interest to limit inflammation and foreign body reactions have been conferred to bioactive glasses by the addition of appropriate ions (such as Ce or Sr). On the other hand, the antioxidant activity of bioactive glasses without specific ion/molecular doping has been occasionally cited in the literature but never investigated in depth. In the present study, three silica-based bioactive glasses have been developed and characterized for their surface properties (wettability, zeta potential, chemical composition, and reactivity) and radical scavenging activity in the presence/absence of cells. For the first time, the antioxidant activity of simple silica-based (SiO2-CaO-Na2O) bioactive glasses has been demonstrated
    • …
    corecore