21 research outputs found

    Advances in ethanol production

    Get PDF
    Barriers to the commercialization of lignocellulosic ethanol include the development of more robust biocatalysts, reduction of cellulase costs, and high capital cost associated with a complex process. Improvements have been made in all areas during the past two years. Oxidoreductases, transporters, and regulators have been identified that can increase the tolerance of biocatalysts to inhibitors formed during pretreatment. Biocatalysts are being developed that grow under conditions that are optimal for cellulase activity and others have been engineered to produce glycoside hydrolases. Ethanol yields resulting from most current process configurations are similar, approximately 0.21 g ethanol/g dry cellulosic feedstock. Potentially, this can be increased to at least 0.27 g ethanol/g biomass (83 gal/ton) using simpler processes

    Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Get PDF
    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed

    Fermentation of Glycerol to Succinate by Metabolically Engineered Strains of Escherichia coli▿ †

    No full text
    The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD+ ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium

    Cloning and Characterization of the Zymobacter palmae Pyruvate Decarboxylase Gene (pdc) and Comparison to Bacterial Homologues

    No full text
    Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein(−1)) and the lowest K(m) for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production
    corecore