2 research outputs found

    Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis

    No full text
    Ustilago maydis is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, U. maydis is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for U. maydis. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system’s suitability for the induced expression of the toxic protein BCL2 Associated X-1 (Bax1). The Golden Gate compatible vector system contains a native minimal promoter from the mating factor a-1 encoding gene, mfa with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in Ustilago maydis

    Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors

    No full text
    Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome
    corecore