5 research outputs found

    Cynomolgus monkey's choroid reference database derived from hybrid deep learning optical coherence tomography segmentation.

    Get PDF
    Cynomolgus monkeys exhibit human-like features, such as a fovea, so they are often used in non-clinical research. Nevertheless, little is known about the natural variation of the choroidal thickness in relation to origin and sex. A combination of deep learning and a deterministic computer vision algorithm was applied for automatic segmentation of foveolar optical coherence tomography images in cynomolgus monkeys. The main evaluation parameters were choroidal thickness and surface area directed from the deepest point on OCT images within the fovea, marked as the nulla with regard to sex and origin. Reference choroid landmarks were set underneath the nulla and at 500 µm intervals laterally up to a distance of 2000 µm nasally and temporally, complemented by a sub-analysis of the central bouquet of cones. 203 animals contributed 374 eyes for a reference choroid database. The overall average central choroidal thickness was 193 µm with a coefficient of variation of 7.8%, and the overall mean surface area of the central bouquet temporally was 19,335 µm2 and nasally was 19,283 µm2. The choroidal thickness of the fovea appears relatively homogeneous between the sexes and the studied origins. However, considerable natural variation has been observed, which needs to be appreciated

    Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring.

    Get PDF
    We aimed to test for feasibility of volume-rendered optical coherence tomography angiography (OCTA) as a novel method for assessing/quantifying retinal vasculature during ocular procedures and to explore the potential for intraoperative use. Thirty patients undergoing periocular anaesthesia were enrolled, since published evidence suggests a reduction in ocular blood flow. Retinal perfusion was monitored based on planar OCTA image-derived data provided by a standard quantification algorithm and postprocessed/volume-rendered OCTA data using a custom software script. Overall, imaging procedures were successful, yet imaging artifacts occurred frequently. In interventional eyes, perfusion parameters decreased during anaesthesia. Planar image-derived and volume rendering-derived parameters were correlated. No correlation was found between perfusion parameters and a motion artifact score developed for this study, yet all perfusion parameters correlated with signal strength as displayed by the device. Concluding, volume-rendered OCTA allows for noninvasive three-dimensional retinal vasculature assessment/quantification in challenging surgical settings and appears generally feasible for intraoperative use

    Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation

    Get PDF
    The fovea is a depression in the center of the macula and is the site of the highest visual acuity. Optical coherence tomography (OCT) has contributed considerably in elucidating the pathologic changes in the fovea and is now being considered as an accompanying imaging method in drug development, such as antivascular endothelial growth factor and its safety profiling. Because animal numbers are limited in preclinical studies and automatized image evaluation tools have not yet been routinely employed, essential reference data describing the morphologic variations in macular thickness in laboratory cynomolgus monkeys are sparse to nonexistent. A hybrid machine learning algorithm was applied for automated OCT image processing and measurements of central retina thickness and surface area values. Morphological variations and the effects of sex and geographical origin were determined. Based on our findings, the fovea parameters are specific to the geographic origin. Despite morphological similarities among cynomolgus monkeys, considerable variations in the foveolar contour, even within the same species but from different geographic origins, were found. The results of the reference database show that not only the entire retinal thickness, but also the macular subfields, should be considered when designing preclinical studies and in the interpretation of foveal data

    Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography

    Get PDF
    Optical coherence tomography angiography (OCTA) enables three-dimensional, high-resolution, depth-resolved flow to be distinguished from non-vessel tissue signals in the retina. Thus, it enables the quantification of the 3D surface area of the retinal vessel signal. Despite the widespread use of OCTA, no representative spatially rendered reference vessel surface area data are published. In this study, the OCTA vessel surface areas in 203 eyes of 107 healthy participants were measured in the 3D domain. A Generalized Linear Model (GLM) model analysis was performed to investigate the effects of sex, age, spherical equivalent, axial length, and visual acuity on the OCTA vessel surface area. The mean overall vessel surface area was 54.53 mm2 (range from 27.03 to 88.7 mm2). OCTA vessel surface area was slightly negatively correlated with age. However, the GLM model analysis identified axial length as having the strongest effect on OCTA vessel surface area. No significant correlations were found for sex or between left and right eyes. This is the first study to characterize three-dimensional vascular parameters in a population based on OCTA with respect to the vessel surface area

    Dynamic volume-rendered optical coherence tomography pupillometry

    Get PDF
    Purpose: To assess intrapupillary space (IPS) changes in healthy subjects with regard to decreased iris motility in patients with pseudoexfoliation glaucoma (PEXG) or non-arteritic anterior ischaemic optic neuropathy (NAION) in a feasibility study in a clinical environment. Methods: Scotopic and photopic IPS measurements using three-dimensionally rendered swept-source optical coherence tomography (SS-OCT) data were obtained and compared for all subjects. Intrapupillary space (IPS) parameters were evaluated such as absolute volumetric differences, relative light response for volumetric ratios and pupillary ejection fraction (PEF) for functional contraction measurements. Results: From a total of 122 IPS from 66 subjects, 106 IPS were eligible for comparison providing values for 72 normal, 30 PEXG and 4 NAION eyes. In healthy, PEXG and NAION subjects, scotopic overall mean IPS was 8.90, 3.45 and 4.16 mm3, and photopic overall mean IPS was 0.87, 0.74 and 1.13 mm3, respectively. Three-dimensional contractility showed a mean absolute difference of 8.03 mm3 for normals (defined as 100% contractility), 2.72 mm3 for PEXG (33.88% of normal) and 3.03 mm3 for NAION (38.50% of normal) with a relative light response ratio between scotopic and photopic volumes of 10.26 (100%), 4.69 (45.70%) and 3.67 (35.78%), respectively. Pupillary ejection fraction (PEF) showed a contractile pupillary emptying of 88.11% for normals, 76.92% for PEXG and 70.91% for NAION patients. Conclusion: This 3D pupillometry OCT assessment allows for quantitative measurements of pupil function, contractility and response to light. More specifically, PEF is presented as a potential (neuro)-pupillary outcome measure that could be useful in the monitoring of ophthalmic disorders that affect pupillary function
    corecore