210 research outputs found
Recommended from our members
Ensemble prediction for nowcasting with a convection-permitting model - II: forecast error statistics
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed
Streamer Wave Events Observed in Solar Cycle 23
In this paper we conduct a data survey searching for well-defined streamer
wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO)
on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle
23. As a result, 8 candidate events are found and presented here. We compare
different events and find that in most of them the driving CMEs ejecta are
characterized by a high speed and a wide angular span, and the CME-streamer
interactions occur generally along the flank of the streamer structure at an
altitude no higher than the bottom of the field of view of LASCO C2. In
addition, all front-side CMEs have accompanying flares. These common
observational features shed light on the excitation conditions of streamer wave
events.
We also conduct a further analysis on one specific streamer wave event on 5
June 2003. The heliocentric distances of 4 wave troughs/crests at various
exposure times are determined; they are then used to deduce the wave properties
like period, wavelength, and phase speeds. It is found that both the period and
wavelength increase gradually with the wave propagation along the streamer
plasma sheet, and the phase speed of the preceding wave is generally faster
than that of the trailing ones. The associated coronal seismological study
yields the radial profiles of the Alfv\'en speed and magnetic field strength in
the region surrounding the streamer plasma sheet. Both quantities show a
general declining trend with time. This is interpreted as an observational
manifestation of the recovering process of the CME-disturbed corona. It is also
found that the Alfv\'enic critical point is at about 10 R where the
flow speed, which equals the Alfv\'en speed, is 200 km s
Towards a global land surface climate fiducial reference measurements network
There is overwhelming evidence that the climate system has warmed since the instigation of instrumental meteorological observations. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that the evidence for warming was unequivocal. However, owing to imperfect measurements and ubiquitous changes in measurement networks and techniques, there remain uncertainties in many of the details of these historical changes. These uncertainties do not call into question the trend or overall magnitude of the changes in the global climate system. Rather, they act to make the picture less clear than it could be, particularly at the local scale where many decisions regarding adaptation choices will be required, both now and in the future. A set of high-quality long-term fiducial reference measurements of essential climate variables will enable future generations to make rigorous assessments of future climate change and variability, providing society with the best possible information to support future decisions. Here we propose that by implementing and maintaining a suitably stable and metrologically well-characterized global land surface climate fiducial reference measurements network, the present-day scientific community can bequeath to future generations a better set of observations. This will aid future adaptation decisions and help us to monitor and quantify the effectiveness of internationally agreed mitigation steps. This article provides the background, rationale, metrological principles, and practical considerations regarding what would be involved in such a network, and outlines the benefits which may accrue. The challenge, of course, is how to convert such a vision to a long-term sustainable capability providing the necessary well-characterized measurement series to the benefit of global science and future generations
IRAS 20050+2720: Anatomy of a young stellar cluster
IRAS 20050+2720 is young star forming region at a distance of 700 pc without
apparent high mass stars. We present results of our multiwavelength study of
IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS
and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages
are found. We characterize the distribution of young stellar objects (YSOs) in
this region using a minimum spanning tree (MST) analysis. We newly identify a
second cluster core, which consists mostly of class II objects, about 10 arcmin
from the center of the cloud. YSOs of earlier evolutionary stages are more
clustered than more evolved objects. The X-ray luminosity function (XLF) of
IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more
massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio
compared with the diffuse ISM.Comment: 15 pages, 12 figures, accepted by A
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
Recommended from our members
Data assimilation with correlated observation errors: experiments with a 1-D shallow water model
Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm
A Model for (Quasi-)Periodic Multiwavelength Photometric Variability in Young Stellar Objects
We present radiation transfer models of rotating young stellar objects (YSOs)
with hotspots in their atmospheres, inner disk warps and other 3-D effects in
the nearby circumstellar environment. Our models are based on the geometry
expected from the magneto-accretion theory, where material moving inward in the
disk flows along magnetic field lines to the star and creates stellar hotspots
upon impact. Due to rotation of the star and magnetosphere, the disk is
variably illuminated. We compare our model light curves to data from the
Spitzer YSOVAR project (Morales-Calderon et al. 2014, Cody et al. 2014) to
determine if these processes can explain the variability observed at optical
and mid-infrared wavelengths in young stars. We focus on those variables
exhibiting "dipper" behavior that may be periodic, quasi-periodic, or
aperiodic. We find that the stellar hotspot size and temperature affects the
optical and near-infrared light curves, while the shape and vertical extent of
the inner disk warp affects the mid-IR light curve variations. Clumpy disk
distributions with non-uniform fractal density structure produce more
stochastic light curves. We conclude that the magneto-accretion theory is
consistent with certain aspects of the multi-wavelength photometric variability
exhibited by low-mass YSOs. More detailed modeling of individual sources can be
used to better determine the stellar hotspot and inner disk geometries of
particular sources.Comment: Accepted to Ap
- …