28 research outputs found
An H5N1 influenza DNA vaccine for South Africa
The highly pathogenic avian influenza virus H5N1 is a potent pandemic threat because of its frequent transmission from birds to humans and the increasing possibility of human to human transmission. During the 2009 H1N1 pandemic it was clear that rapid influenza vaccine production is a problem worldwide. Additionally, developing countries like South Africa generally cannot produce their own influenza vaccines because the traditional egg-based vaccine production method currently employed is too lengthy and too difficult to establish. As part of an exercise aimed at exploring the feasibility of producing emergency response influenza vaccines, we investigated an experimental DNA vaccine to the H5N1 influenza virus. We focused on the virion haemagglutinin, because it elicits the primary neutralising immune response following infection. Accordingly, we developed an H5N1 DNA vaccine with full-length and truncated versions of the haemagglutinin gene, to match previously developed protein candidates. Vaccinated mice developed a strong antibody response to the haemagglutinin protein. In addition, the full-length H5 gene elicited high haemagglutination inhibition titres in mice, indicating that it has potential as a candidate pandemic vaccine for South Africa
Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana
Background: Beak and feather disease virus (BFDV) is an important disease causing agent affecting psittacines. BFDV is highly infectious and can present as acute, chronic or subclinical disease. The virus causes immunodeficiency and is often associated with secondary infections. No commercial vaccine is available and yields of recombinant BFDV capsid protein (CP) expressed in insect cells and bacteria are yet to be seen as commercially viable, although both systems produced BFDV CP that could successfully assemble into virus-like particles (VLPs). Plants as expression systems are increasingly becoming favourable for the production of region-specific and niche market products. The aim of this study was to investigate the formation and potential for purification of BFDV VLPs in Nicotiana benthamiana. Methods: The BFDV CP was transiently expressed in N. benthamiana using an Agrobacterium-mediated system and plant expression vectors that included a bean yellow dwarf virus (BeYDV)-based replicating DNA vector. Plant-produced BFDV CP was detected using immunoblotting. VLPs were purified using sucrose cushion and CsCl density gradient centrifugation and visualised using transmission electron microscopy. Results: In this study we demonstrate that the BFDV CP can be successfully expressed in N. benthamiana, albeit at relatively low yield. Using a purification strategy based on centrifugation we demonstrated that the expressed CP can self-assemble into VLPs that can be detected using electron microscopy. These plant-produced BFDV VLPs resemble those produced in established recombinant expression systems and infectious virions. It is possible that the VLPs are spontaneously incorporating amplicon DNA produced from the replicating BeYDV plant vector. Conclusions: This is the first report of plant-made full-length BFDV CP assembling into VLPs. The putative pseudovirions could be used to further the efficacy of vaccines against BFDV
Setting up a platform for plant-based influenza virus vaccine production in South Africa
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries
Optimizing a Human Papillomavirus Type 16 L1-Based Chimaeric Gene for Expression in Plants
Human papillomaviruses (HPVs) are the causative agents of cervical cancer, the fourth most prevalent cancer in women worldwide. The major capsid protein L1 self-assembles into virus-like particles (VLPs), even in the absence of the minor L2 protein: such VLPs have successfully been used as prophylactic vaccines. There remains a need, however, to develop cheaper vaccines that protect against a wider range of HPV types. The use of all or parts of the L2 minor capsid protein can potentially address this issue, as it has sequence regions conserved across several HPV types, which can elicit a wider spectrum of cross-neutralizing antibodies. Production of HPV VLPs in plants is a viable option to reduce costs; the use of a L1/L2 chimera which has previously elicited a cross-protective immune response is an option to broaden cross-protection. The objective of this study was to investigate the effect of codon optimization and of increasing the G+C content of synthetic L1/L2 genes on protein expression in plants. Additionally, we replaced varying portions of the 5′ region of the L1 gene with the wild type (wt) viral sequence to determine the effect of several negative regulatory elements on expression. We showed that GC-rich genes resulted in a 10-fold increase of mRNA levels and 3-fold higher accumulation of proteins. However, the highest increase of expression was achieved with a high GC-content human codon-optimized gene, which resulted in a 100-fold increase in mRNA levels and 8- to 9-fold increase in protein levels. Changing the 5′ end of the L1 gene back to its wt sequence decreased mRNA and protein expression. Our results suggest that the negative elements in the 5′ end of L1 are inadvertently destroyed by changing the codon usage, which enhances protein expression
Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice
Abstract
Background
Human papillomaviruses (HPV) are the causative agents of cervical cancer in women, which results in over 250 000 deaths per year. Presently there are two prophylactic vaccines on the market, protecting against the two most common high-risk HPV types 16 and 18. These vaccines remain very expensive and are not generally affordable in developing countries where they are needed most. Additionally, there remains a need to treat women that are already infected with HPV, and who have high-grade lesions or cervical cancer.
Methods
In this paper, we characterize the immunogenicity of a therapeutic vaccine that targets the E7 protein of the most prevalent high-risk HPV - type 16 – the gene which has previously been shown to be effective in DNA vaccine trials in mice. The synthetic shuffled HPV-16 E7 (16E7SH) has lost its transforming properties but retains all naturally-occurring CTL epitopes. This was genetically fused to Zera®, a self-assembly domain of the maize γ-zein able to induce the accumulation of recombinant proteins into protein bodies (PBs), within the endoplasmic reticulum in a number of expression systems.
Results
High-level expression of the HPV 16E7SH protein fused to Zera® in plants was achieved, and the protein bodies could be easily and cost-effectively purified. Immune responses comparable to the 16E7SH DNA vaccine were demonstrated in the murine model, with the protein vaccine successfully inducing a specific humoral as well as cell mediated immune response, and mediating tumour regression.
Conclusions
The fusion of 16E7SH to the Zera® peptide was found to enhance the immune responses, presumably by means of a more efficient antigen presentation via the protein bodies. Interestingly, simply mixing the free PBs and 16E7SH also enhanced immune responses, indicating an adjuvant activity for the Zera® PBs
Human papillomavirus prevalence, viral load and pre-cancerous lesions of the cervix in women initiating highly active antiretroviral therapy in South Africa: a cross-sectional study
Background Cervical cancer and infection with human immunodeficiency virus (HIV) are both important public health problems in South Africa (SA). The aim of this study was to determine the prevalence of cervical squamous intraepithelial lesions (SILs), high-risk human papillomavirus (HR-HPV), HPV viral load and HPV genotypes in HIV positive women initiating anti-retroviral (ARV) therapy. Methods A cross-sectional survey was conducted at an anti-retroviral (ARV) treatment clinic in Cape Town, SA in 2007. Cervical specimens were taken for cytological analysis and HPV testing. The Digene Hybrid Capture 2 (HC2) test was used to detect HR-HPV. Relative light units (RLU) were used as a measure of HPV viral load. HPV types were determined using the Roche Linear Array HPV Genotyping test. Crude associations with abnormal cytology were tested and multiple logistic regression was used to determine independent risk factors for abnormal cytology. Results The median age of the 109 participants was 31 years, the median CD4 count was 125/mm3, 66.3% had an abnormal Pap smear, the HR-HPV prevalence was 78.9% (Digene), the median HPV viral load was 181.1 RLU (HC2 positive samples only) and 78.4% had multiple genotypes. Among women with abnormal smears the most prevalent HR-HPV types were HPV types 16, 58 and 51, all with a prevalence of 28.5%. On univariate analysis HR-HPV, multiple HPV types and HPV viral load were significantly associated with the presence of low and high-grade SILs (LSIL/HSIL). The multivariate logistic regression showed that HPV viral load was associated with an increased odds of LSIL/HSIL, odds ratio of 10.7 (95% CI 2.0 – 57.7) for those that were HC2 positive and had a viral load of ≤ 181.1 RLU (the median HPV viral load), and 33.8 (95% CI 6.4 – 178.9) for those that were HC2 positive with a HPV viral load > 181.1 RLU. Conclusion Women initiating ARVs have a high prevalence of abnormal Pap smears and HR-HPV. Our results underscore the need for locally relevant, rigorous screening protocols for the increasing numbers of women accessing ARV therapy so that the benefits of ARVs are not partially offset by an excess risk in cervical cancer
Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum
Background We have investigated the possibility and feasibility of producing the HPV-11 L1 major capsid protein in transgenic Arabidopsis thaliana ecotype Columbia and Nicotiana tabacum cv. Xanthi as potential sources for an inexpensive subunit vaccine. Results Transformation of plants was only achieved with the HPV-11 L1 gene with the C-terminal nuclear localization signal (NLS-) encoding region removed, and not with the full-length gene. The HPV-11 L1 NLS- gene was stably integrated and inherited through several generations of transgenic plants. Plant-derived HPV-11 L1 protein was capable of assembling into virus-like particles (VLPs), although resulting particles displayed a pleomorphic phenotype. Neutralising monoclonal antibodies binding both surface-linear and conformation-specific epitopes bound the A. thaliana-derived particles and - to a lesser degree - the N. tabacum-derived particles, suggesting that plant-derived and insect cell-derived VLPs displayed similar antigenic properties. Yields of up to 12 μg/g of HPV-11 L1 NLS- protein were harvested from transgenic A. thaliana plants, and 2 μg/g from N. tabacum plants - a significant increase over previous efforts. Immunization of New Zealand white rabbits with ∼50 μg of plant-derived HPV-11 L1 NLS- protein induced an antibody response that predominantly recognized insect cell-produced HPV-11 L1 NLS- and not NLS+ VLPs. Evaluation of the same sera concluded that none of them were able to neutralise pseudovirion in vitro. Conclusion We expressed the wild-type HPV-11 L1 NLS- gene in two different plant species and increased yields of HPV-11 L1 protein by between 500 and 1000-fold compared to previous reports. Inoculation of rabbits with extracts from both plant types resulted in a weak immune response, and antisera neither reacted with native HPV-11 L1 VLPs, nor did they neutralise HPV-11 pseudovirion infectivity. This has important and potentially negative implications for the production of HPV-11 vaccines in plants
Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs)
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries
Developing country applications of molecular farming: case studies in South Africa and Argentina.
Molecular farming is a technology that is very well suited to being applied in developing countries, given the reasonably high level of expertise in recombinant plant development in many centers. In addition, there is an urgent need for products such as inexpensive vaccines and therapeutics for livestock and for some human diseases – and especially those that do not occur or are rare in developed regions. South Africa and Argentina have been at the fore in this area among developing nations, as researchers have been able to use plants to produce experimental therapeutics such as nanoantibodies against rotavirus and vaccines against a wide variety of diseases, including Rabbit haemorrhagic disease virus, Foot and mouth disease virus, Bovine viral diarrhoea virus, bovine rotaviruses, Newcastle disease virus, rabbit and human papillomaviruses, Bluetongue virus, and Beak and feather disease virus of psittacines. A combination of fortuitous scientific expertise in both places, coupled with association with veterinary and human disease research centers, has enabled the growth of research groups that have managed to compete successfully with others in Europe and the USA and elsewhere, to advance this field. This review will cover relevant work from both South Africa and Argentina, as well as a discussion about the perspectives in this field for developing nations.Fil: Rybicki, Edward P.. University of Cape Town; Estados UnidosFil: Hitzeroth, Inga I.. University of Cape Town; Estados UnidosFil: Meyers, Ann. University of Cape Town; Estados UnidosFil: Dus Santos, María José. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wigdorovitz, Andrés. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin