5 research outputs found

    Acta Informatica manuscript No. (will be inserted by the editor) A Complete Classification of the Expressiveness of Interval Logics of Allen’s Relations The General and the Dense Cases

    Get PDF
    Abstract Interval temporal logics take time intervals, instead of time instants, as their primitive temporal entities. One of the most studied interval temporal logics is Halpern and Shoham’s modal logic of time intervals HS, which associates a modal operator with each binary relation between intervals over a linear order (the so-called Allen’s interval relations). In this paper, we compare and classify the expressiveness of all fragments of HS on the class of all linear orders and on the subclass of all dense linear orders. For each of these classes, we identify a complete set of definabilities between HS modalities, valid in that class, thus obtaining a complete classification of the family of all 4096 fragments of HS with respect to their expressiveness. We show that on the class of all linear orders there are exactly 1347 expressively different fragments of HS, while on the class of dense linear orders there are exactly 966 such expressively different fragments

    An Algorithm for Enumerating Maximal Models of Horn Theories with an Application to Modal Logics ⋆

    No full text
    Abstract. The fragment of propositional logic known as Horn theories plays a central role in automated reasoning. The problem of enumerating the maximal models of a Horn theory (MaxMod) has been proved to be computationally hard, unless P = NP. To the best of our knowledge, the only algorithm available for it is the one based on a brute-force approach. In this paper, we provide an algorithm for the problem of enumerating the maximal subsets of facts that do not entail a distinguished atomic proposition in a positive Horn theory (MaxNoEntail). We show that MaxMod is polynomially reducible to MaxNoEntail (and vice versa), making it possible to solve also the former problem using the proposed algorithm. Addressing MaxMod via MaxNoEntail opens, inter alia, the possibility of benefiting from the monotonicity of the notion of entailment. (The notion of model does not enjoy such a property.) We also discuss an application of MaxNoEntail to expressiveness issues for modal logics, which reveals the effectiveness of the proposed algorithm.

    A complete classification of the expressiveness of interval logics of Allen’s relations: the general and the dense cases

    Get PDF
    Interval temporal logics take time intervals, instead of time points, as their primitive temporal entities. One of the most studied interval temporal logics is Halpern and Shoham’s modal logic of time intervals HS, which associates a modal operator with each binary relation between intervals over a linear order (the so-called Allen’s interval relations). In this paper, we compare and classify the expressiveness of all fragments of HS on the class of all linear orders and on the subclass of all dense linear orders. For each of these classes, we identify a complete set of definabilities between HS modalities, valid in that class, thus obtaining a complete classification of the family of all 4096 fragments of HS with respect to their expressiveness. We show that on the class of all linear orders there are exactly 1347 expressively different fragments of HS, while on the class of dense linear orders there are exactly 966 such expressively different fragments
    corecore