163 research outputs found

    La vida del poeta novicio (Anónimo, 1605)

    Get PDF

    A Segmented Total Energy Detector (sTED) optimized for (n, γ) cross-section measurements at n_TOF EAR2

    Get PDF
    The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of ∼ 4 ⋅ 107 neutrons per nominal proton pulse, which is ∼50 times higher than the one of Experimental ARea 1 (EAR1) of ∼ 8 ⋅ 105 neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector’s response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to γ-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.I+D+i grant PGC2018- 096717-B-C21 funded by MCIN/AEI/10.13039/501100011033, by the European Commission H2020 Framework Programme project SANDA (Grant agreement ID: 847552)Funding agencies of the n_TOF participating institution

    Au-Decorated Ce-Ti Mixed Oxides for Efficient CO Preferential Photooxidation

    Get PDF
    We investigated the photocatalytic behavior of gold nanoparticles supported on CeO2-TiO2 nanostructured matrixes in the CO preferential oxidation in H2-rich stream (photo-CO-PROX), by modifying the electronic band structure of ceria through addition of titania and making it more suitable for interacting with free electrons excited in gold nanoparticles through surface plasmon resonance. CeO2 samples with different TiO2 concentrations (0-20 wt %) were prepared through a slow coprecipitation method in alkaline conditions. The synthetic route is surfactant-free and environmentally friendly. Au nanoparticles (<1.0 wt % loading) were deposited on the surface of the CeO2-TiO2 oxides by deposition-precipitation. A benchmarking sample was also considered, prepared by standard fast coprecipitation, to assess how a peculiar morphology can affect the photocatalytic behavior. The samples appeared organized in a hierarchical needle-like structure, with different morphologies depending on the Ti content and preparation method, with homogeneously distributed Au nanoparticles decorating the Ce-Ti mixed oxides. The morphology influences the preferential photooxidation of CO to CO2 in excess of H2 under simulated solar light irradiation at room temperature and atmospheric pressure. The Au/CeO2-TiO2 systems exhibit much higher activity compared to a benchmark sample with a non-organized structure. The most efficient sample exhibited CO conversions of 52.9 and 80.2%, and CO2 selectivities equal to 95.3 and 59.4%, in the dark and under simulated sunlight, respectively. A clear morphology-functionality correlation was found in our systematic analysis, with CO conversion maximized for a TiO2 content equal to 15 wt %. The outcomes of this study are significant advancements toward the development of an effective strategy for exploitation of hydrogen as a viable clean fuel in stationary, automotive, and portable power generators

    Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance

    Get PDF
    The effect and responses to drought stress were analyzed in Quercus ilex L. seedlings using a nontargeted metabolomic approach, implementing the approaches of previous studies in which other -omics platforms, transcriptomics, and proteomics were employed. This work aimed to characterize the Q. ilex leaf metabolome, determining possible mechanisms and molecular markers of drought tolerance and identifying putative bioactive compounds. Six-month-old seedling leaves subjected to drought stress imposed by water withholding under high-temperature and irradiance conditions were collected when leaf fluorescence decreased by 20% (day 17) and 45% (day 24) relative to irrigated seedlings. A total of 3934 compounds were resolved, with 616 being variable and 342 identified, which belonged to five chemical families. Out of the identified compounds, 33 were variable, mostly corresponding to amino acids, carboxylic acids, benzenoids, flavonoids and isoprenoids. Epigallocatechin, ellagic acid, pulegone, indole-3-acrylic acid and dihydrozeatin-O-glucoside were up-accumulated under drought conditions at both sampling times. An integrated multi-omics analysis of phenolic compounds and related enzymes was performed, revealing that some enzymes involved in the flavonoid pathways (chalcone synthase, anthocyanidin synthase and anthocyanidin reductase) were up-accumulated at day 24 in non-irrigated seedlings. Some putative markers of tolerance to drought in Q. ilex are proposed for assisting breeding programs based on the selection of elite genotypes

    Recent highlights and prospects on (n,γ\gamma) measurements at the CERN n_TOF facility

    Full text link
    Neutron capture cross-section measurements are fundamental in the study of the slow neutron capture (s-) process of nucleosynthesis and for the development of innovative nuclear technologies. One of the best suited methods to measure radiative neutron capture (n,γ\gamma) cross sections over the full stellar range of interest for all the applications is the time-of-flight (TOF) technique. Overcoming the current experimental limitations for TOF measurements, in particular on low mass unstable samples, requires the combination of facilities with high instantaneous flux, such as the CERN n_TOF facility, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution presents a summary about the recent highlights in the field of (n,γ\gamma) measurements at n_TOF. The recent upgrades in the facility and in new detector concepts for (n,\g) measurements are described. Last, an overview is given on the existing limitations and prospects for TOF measurements involving unstable targets and the outlook for activation measurements at the brand new high-flux n_TOF-NEAR station.Comment: 7 pages, 5 figures (8 panels). Proceedings of the CGS-17 conference. To be published in EPJ Web of Conference

    Substituent effects on enthalpies of formation of nitrogen heterocycles: 2-substituted benzimidazoles and related compounds

    Get PDF
    The enthalpies of combustion, heat capacities, enthalpies of sublimation and enthalpies of formation of 2-tert-butylbenzimidazole (2tBuBIM) and 2-phenylimidazole (2PhIM) are reported and the results compared with those of benzene derivatives and a series of azoles (imidazoles, pyrazoles, benzimidazoles and indazoles). Theoretical estimates of the enthalpies of formation were obtained through the use of atom equivalent schemes. The necessary energies were obtained in single-point calculations at the B3LYP/6-311++G(d,p) on B3LYP/6-31G* optimized geometries. The comparison of experimental and calculated values of all studied compounds bearing H (unsubstituted), methyl (Me) ethyl (Et), propyl (Pr), isopropyl (iPr), tert-butyl (tBu), benzyl (Bn) and phenyl (Ph) groups show remarkable homogeneity. The remarkable consistency of both the calculated and experimental results allows us to predict with reasonable certainty the missing experimental values. The crystal and molecular structure of the 2-benzylbenzimidazole (2BnBIM) has been determined by X-ray analysis. The observed molecular conformation permits the crystal being built up through N−H···N hydrogen bonds and van der Waals contacts between the molecules. An attempt has been made to relate the crystal structure to the enthalpies of sublimation.Thanks are due to Instituto de Cooperac¸a˜o Cientı´fica e Tecnolo´gica International (ICCTI), Lisbon, Portugal, and Consejo Superior de Investigaciones Cientı´ficas (CSIC), Madrid, Spain. L.M.P.F.A. thanks Fundac¸a˜o para a Cieˆncia e Tecnologia (FCT), Lisbon, Portugal, for the award of a postdoctoral fellowship (PRAXIS XXI/BPD/16319/98). This work has also been financed by DGICYT (BQU-2003- 00894, -00976 and -01251)

    Substrate promiscuity of inositol 1,4,5-trisphosphate kinase driven by structurally-modified ligands and active site plasticity

    Get PDF
    D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable

    Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes

    Get PDF
    CONTEXT: Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE: Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN: OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS: OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-β, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS: These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue

    Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments

    Full text link
    One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n\_TOF facility, the detectors of choice are the C6_{6}D6_{6} liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n\_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from 197^{197}Au(nn,γ\gamma), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements
    corecore