137 research outputs found
Alzheimer's disease pathology:pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms
The locus coeruleus (LC) supplies norepinephrine to the brain, is one of the first sites of tau deposition in Alzheimer's disease (AD) and modulates a variety of behaviors and cognitive functions. Transgenic mouse models showed that norepinephrine dysregulation after LC lesions exacerbates inflammatory responses, blood-brain barrier leakage (BBB), and cognitive deficits. Here, we investigated relationships between central norepinephrine metabolism, tau and beta-amyloid (Aβ), inflammation, BBB-dysfunction, neuropsychiatric problems, and memory in-vivo in a memory clinic population (total n = 111, 60 subjective cognitive decline, 36 mild cognitively impaired, and 19 AD dementia). Cerebrospinal fluid (CSF) and blood samples were collected and analyzed for 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), CSF/plasma albumin ratio (Q-alb), Aβ, phosphorylated tau, and interleukins. The verbal word learning task and the neuropsychiatric inventory assessed memory functioning and neuropsychiatric symptoms. Structural equation models tested the relationships between all fluid markers, cognition and behavior, corrected for age, education, sex, and clinical dementia rating score. Our results showed that neuropsychiatric symptoms show strong links to both MHPG and p-tau, whereas memory deficits are linked to MHPG via a combination of p-tau and inflammation-driven amyloidosis (30-35% indirect effect contribution). These results suggest that the LC-norepinephrine may be pivotal to understand links between AD pathology and behavioral and cognitive deficits in AD
Multilingual Learning for Mild Cognitive Impairment Screening from a Clinical Speech Task
The Semantic Verbal Fluency Task (SVF) is an efficient and minimally invasive speech-based screening tool for Mild Cognitive Impairment (MCI). In the SVF, testees have to produce as many words for a given semantic category as possible within 60 seconds. State-of-the-art approaches for automatic evaluation of the SVF employ word embeddings to analyze semantic similarities in these word sequences. While these approaches have proven promising in a variety of test languages, the small amount of data available for any given language limits the performance. In this paper, we for the first time investigate multilingual learning approaches for MCI classification from the SVF in order to combat data scarcity. To allow for cross-language generalisation, these approaches either rely on translation to a shared language, or make use of several distinct word embeddings. In evaluations on a multilingual corpus of older French, Dutch, and German participants (Controls=66, MCI=66), we show that our multilingual approaches clearly improve over single-language baselines
Validation of the Remote Automated ki:e Speech Biomarker for Cognition in Mild Cognitive Impairment:Verification and Validation following DiME V3 Framework
INTRODUCTION: Progressive cognitive decline is the cardinal behavioral symptom in most dementia-causing diseases such as Alzheimer's disease. While most well-established measures for cognition might not fit tomorrow's decentralized remote clinical trials, digital cognitive assessments will gain importance. We present the evaluation of a novel digital speech biomarker for cognition (SB-C) following the Digital Medicine Society's V3 framework: verification, analytical validation, and clinical validation. METHODS: Evaluation was done in two independent clinical samples: the Dutch DeepSpA (N = 69 subjective cognitive impairment [SCI], N = 52 mild cognitive impairment [MCI], and N = 13 dementia) and the Scottish SPeAk datasets (N = 25, healthy controls). For validation, two anchor scores were used: the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale. RESULTS: Verification: The SB-C could be reliably extracted for both languages using an automatic speech processing pipeline. Analytical Validation: In both languages, the SB-C was strongly correlated with MMSE scores. Clinical Validation: The SB-C significantly differed between clinical groups (including MCI and dementia), was strongly correlated with the CDR, and could track the clinically meaningful decline. CONCLUSION: Our results suggest that the ki:e SB-C is an objective, scalable, and reliable indicator of cognitive decline, fit for purpose as a remote assessment in clinical early dementia trials
Small vessel disease burden and functional brain connectivity in mild cognitive impairment
Background: The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing.Method: Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox.Results: Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group.Conclusion: These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning
Small vessel disease burden and functional brain connectivity in mild cognitive impairment
Background: The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing.Method: Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox.Results: Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group.Conclusion: These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning
An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
Machine learning methods have shown large potential for the automatic early
diagnosis of Alzheimer's Disease (AD). However, some machine learning methods
based on imaging data have poor interpretability because it is usually unclear
how they make their decisions. Explainable Boosting Machines (EBMs) are
interpretable machine learning models based on the statistical framework of
generalized additive modeling, but have so far only been used for tabular data.
Therefore, we propose a framework that combines the strength of EBM with
high-dimensional imaging data using deep learning-based feature extraction. The
proposed framework is interpretable because it provides the importance of each
feature. We validated the proposed framework on the Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset, achieving accuracy of 0.883 and
area-under-the-curve (AUC) of 0.970 on AD and control classification.
Furthermore, we validated the proposed framework on an external testing set,
achieving accuracy of 0.778 and AUC of 0.887 on AD and subjective cognitive
decline (SCD) classification. The proposed framework significantly outperformed
an EBM model using volume biomarkers instead of deep learning-based features,
as well as an end-to-end convolutional neural network (CNN) with optimized
architecture.Comment: 11 pages, 5 figure
Small vessel disease burden and functional brain connectivity in mild cognitive impairment
Background: The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing. Method: Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox. Results: Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group. Conclusion: These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning.</p
- …