73 research outputs found
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension.
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.This work was partially funded by Fondo Europeo de Desarrollo Regional (FEDER) Instituto de Salud Carlos III-Fondo de Investigación Sanitaria PI17/00995 and Intensificación AES2019 to Dr. García-Álvarez. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Part of this work was developed at the Centre de Recerca Biomèdica Cellex, IDIBAPS, Barcelona. The IDIBAPS belongs to the CERCA Programme and receives partial funding from the Generalitat de Catalunya.S
Global change, global trade, and the next wave of plant invasions
Copyright © 2012 Ecological Society of AmericaMany non-native plants in the US have become problematic invaders of native and managed ecosystems, but a new generation of invasive species may be at our doorstep. Here, we review trends in the horticultural trade and invasion patterns of previously introduced species and show that novel species introductions from emerging horticultural trade partners are likely to rapidly increase invasion risk. At the same time, climate change and water restrictions are increasing demand for new types of species adapted to warm and dry environments. This confluence of forces could expose the US to a range of new invasive species, including many from tropical and semiarid Africa as well as the Middle East. Risk assessment strategies have proven successful elsewhere at identifying and preventing invasions, although some modifications are needed to address emerging threats. Now is the time to implement horticulture import screening measures to prevent this new wave of plant invasions.National Science Foundatio
Will extreme climatic events facilitate biological invasions?
Copyright © 2012 Ecological Society of AmericaExtreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning.National Science Foundatio
Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis
The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis for most life on Earth, is catalyzed by photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII requires a controlled step-wise assembly process of which the early steps are considered to be highly conserved between plants and their cyanobacterial progenitors. This assembly process involves auxiliary proteins, which are likewise conserved. In the present work, we used Arabidopsis (Arabidopsis thaliana) as a model to show that in plants, a eukaryote-exclusive assembly factor facilitates the early assembly step, during which the intrinsic antenna protein CP47 becomes associated with the PSII reaction center (RC) to form the RC47 intermediate. This factor, which we named DECREASED ELECTRON TRANSPORT AT PSII (DEAP2), works in concert with the conserved PHOTOSYNTHESIS AFFECTED MUTANT 68 (PAM68) assembly factor. The deap2 and pam68 mutants showed similar defects in PSII accumulation and assembly of the RC47 intermediate. The combined lack of both proteins resulted in a loss of functional PSII and the inability of plants to grow photoautotrophically on the soil. While overexpression of DEAP2 partially rescued the pam68 PSII accumulation phenotype, this effect was not reciprocal. DEAP2 accumulated at 20-fold higher levels than PAM68, together suggesting that both proteins have distinct functions. In summary, our results uncover eukaryotic adjustments to the PSII assembly process, which involve the addition of DEAP2 for the rapid progression from RC to RC47.publishedVersio
Non-Invasive Assessment of Pulmonary Vasculopathy
Right heart catheterization remains necessary for the diagnosis of pulmonary hypertension and, therefore, for the prognostic evaluation of patients with chronic heart failure. The non-invaSive Assessment of Pulmonary vasculoPathy in Heart failure (SAPPHIRE) study was designed to assess the feasibility and prognostic relevance of a non-invasive evaluation of the pulmonary artery vasculature in patients with heart failure and pulmonary hypertension. Patients will undergo a right heart catheterization, cardiac resonance imaging, and a pulmonary function test in order to identify structural and functional parameters allowing the identification of combined pre- and postcapillary pulmonary hypertension, and correlate these findings with the hemodynamic dataThis research was funded by European Regional Development Fund and the Carlos III Research Institute through a grant of the Health Strategy Action (PI17/01569).S
Longitudinal interplay between subclinical atherosclerosis, cardiovascular risk factors, and cerebral glucose metabolism in midlife: results from the PESA prospective cohort study
BACKGROUND: Cardiovascular disease and dementia often coexist at advanced stages. Yet, longitudinal studies examining the interplay between atherosclerosis and its risk factors on brain health in midlife are scarce. We aimed to characterise the longitudinal associations between cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in middle-aged asymptomatic individuals. METHODS: The Progression of Early Subclinical Atherosclerosis (PESA) study is a Spanish longitudinal observational cohort study of 4184 asymptomatic individuals aged 40-54 years (NCT01410318). Participants with subclinical atherosclerosis underwent longitudinal cerebral [18F]fluorodeoxyglucose ([18F]FDG)-PET, and annual percentage change in [18F]FDG uptake was assessed (primary outcome). Cardiovascular risk was quantified with SCORE2 and subclinical atherosclerosis with three-dimensional vascular ultrasound (exposures). Multivariate regression and linear mixed effects models were used to assess associations between outcomes and exposures. Additionally, blood-based biomarkers of neuropathology were quantified and mediation analyses were performed. Secondary analyses were corrected for multiple comparisons using the false discovery rate (FDR) approach. FINDINGS: This longitudinal study included a PESA subcohort of 370 participants (median age at baseline 49·8 years [IQR 46·1-52·2]; 309 [84%] men, 61 [16%] women; median follow-up 4·7 years [IQR 4·2-5·2]). Baseline scans took place between March 6, 2013, and Jan 21, 2015, and follow-up scans between Nov 24, 2017, and Aug 7, 2019. Persistent high risk of cardiovascular disease was associated with an accelerated decline of cortical [18F]FDG uptake compared with low risk (β=-0·008 [95% CI -0·013 to -0·002]; pFDR=0·040), with plasma neurofilament light chain, a marker of neurodegeneration, mediating this association by 20% (β=0·198 [0·008 to 0·740]; pFDR=0·050). Moreover, progression of subclinical carotid atherosclerosis was associated with an additional decline in [18F]FDG uptake in Alzheimer's disease brain regions, not explained by cardiovascular risk (β=-0·269 [95% CI -0·509 to -0·027]; p=0·029). INTERPRETATION: Middle-aged asymptomatic individuals with persistent high risk of cardiovascular disease and subclinical carotid atherosclerosis already present brain metabolic decline, suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life. FUNDING: Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Santander Bank, Pro-CNIC Foundation, BrightFocus Foundation, BBVA Foundation, "la Caixa" Foundation
The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States
We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/1/gcb13160_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/2/gcb13160.pd
- …