5 research outputs found

    Developmental immunotoxicity of ethanol in an extended one-generation reproductive toxicity study

    No full text
    The susceptibility of developing immune system to chemical disruption warrants the assessment of immune parameters in reproductive and developmental testing protocols. In this study, a wide range of immune endpoints was included in an extended one-generation reproduction toxicity study (EOGRTS) design to determine the relative sensitivity of immune and developmental parameters to ethanol (EtOH), a well-known developmental toxicant with immunomodulatory properties. Adult Wistar rats were exposed to EtOH via drinking water (0, 1.5, 4, 6.5, 9, 11.5 and 14 % (w/v EtOH)) during premating, mating, gestation and lactation and continuation of exposure of the F-1 from weaning until killed. Immune assessments were performed at postnatal days (PNDs) 21, 42 and 70. Keyhole limpet hemocyanin (KLH)-specific immune responses were evaluated following subcutaneous immunizations on PNDs 21 and 35. EtOH exposure affected innate as well as adaptive immune responses. The most sensitive immune parameters included white blood cell subpopulations, ConA-stimulated splenocyte proliferation, LPS-induced NO and TNF-alpha production by adherent splenocytes and KLH-specific immune responses. Most parameters showed recovery after cessation of EtOH exposure after weaning in the 14 % exposure group. However, effects on LPS-induced NO and TNF-alpha production by adherent splenocytes and KLH-specific parameters persisted until PND 70. The results demonstrate the relative sensitivity to EtOH of especially functional immune parameters and confirm the added value of immune parameters in the EOGRTS. Furthermore, this study identified an expanded KLH-specific parameter set and LPS-induced NO and TNF-alpha production by adherent splenocytes as valuable parameters that can provide additional information on functional immune effects

    Developmental immunotoxicity of di-n-octyltin dichloride (DOTC) in an extended one-generation reproductive toxicity study

    No full text
    Developmental immunotoxicity assessment is considered ready for inclusion in developmental toxicity studies. Further evaluation of proposed and additional assays is needed to determine their utility in assessing developmental immunotoxicity. In this study, a wide range of immunological parameters was included in an extended one-generation reproductive toxicity protocol. F0 Wistar rats were exposed to DOTC via the feed (0, 3, 10, and 30mg/kg) during pre-mating, mating, gestation and lactation and subsequently F1 were exposed from weaning until sacrifice. Immune assessments by several immune parameters were performed at PNDs 21, 42 and 70. The T cell-dependent antibody response to Keyhole Limpet hemocyanin (KLH) was assessed following subcutaneous immunizations with KLH on PNDs 21 and 35 and the delayed-type hypersensitivity response (DTH) against KLH was evaluated at PND 49. No effects were found on PND 21. While effects on lymphocyte subpopulations in the thymus were only observed in the 30. mg/kg group on PND 42, effects on lymphocyte subpopulations in the spleen were found in the 30. mg/kg group on both PNDs 42 and 70. The DTH response already showed an effect at 3. mg/kg and was the overall critical endpoint. The results from this study support the inclusion of splenocyte subpopulation parameters in developmental toxicity studies and identified the DTH response as an important functional parameter. © 2011 Elsevier Ireland Ltd

    Developmental immunotoxicity in male rats after juvenile exposure to di-n-octyltin dichloride (DOTC)

    No full text
    To determine relevant endpoints for evaluating developmental immunotoxicity due to juvenile exposure and optimal age of the animals at assessment, a wide range of immunological parameters were assessed in a juvenile toxicity study. Rats were exposed to di-n-octyltin dichloride (DOTC) by gavage from postnatal day (PND) 10 through PND 21 and via the diet after weaning using a benchmark dose (BMD) approach. Immune assessments were performed in male rats on PNDs 21, 42, and 70 and a subset of animals was used to evaluate the T-cell dependent antibody response (TDAR) to Keyhole limpet hemocyanin. Immune effects were more pronounced on PND 21 and 42 and observed at lower doses than developmental effects. The most sensitive immune parameters affected included TDAR parameters and thymocyte subpopulations with lower confidence limits of the benchmark doses (BMDLs) below the overall no-observed-adverse-effect-level (NOAEL) for DOTC reported so far in literature. These findings illustrate the relative sensitivity of the developing immune system for DOTC, the additional value of assessing functional immune parameters, and underscore the relevance of juvenile immunotoxicity testing in view of the risk assessment of chemicals
    corecore