10 research outputs found

    First molecular data of the Borneo Banteng Bos Javanicus lowi from Sabah, Borneo

    Get PDF
    Phylogenetic relationships among three subspecies of banteng, Burma banteng Bos javanicus birmanicus in mainland Southeast Asia, Javan banteng Bos javanicus javanicus in Java, and Bornean banteng Bos javanicus lowi in Borneo, and the presence/absence of interbreeding between wild Bornean banteng and domestic cattle in Sabah, Malaysia, were investigated by partial sequences of cytochrome b and D-loop of mitochondrial DNA. The results show that genetic distance of the Bornean banteng are relatively close to the gaur Bos gaurus/gayal Bos frontalis (the cytochrome b, 0.004–0.025; the D-loop, 0.012–0.021) followed by Burma banteng (the cytochrome b, 0.027–0.035; the D-loop, 0.040–0.045), and kouprey Bos sauveli (the cytochrome b, 0.031–0.035; the D-loop, 0.037–0.042). There are much greater distances between Bornean banteng and domestic cattle, Bos taurus and Bos indicus (the cytochrome b, 0.059–0.076; the D-loop, 0.081–0.090). These results suggest that the Bornean banteng diverged genetically from other banteng subspecies and that the wild Bornean banteng from this study are pure strain and have high conservation value

    First molecular data on Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae) from Sabah, Malaysian Borneo

    Get PDF
    Phylogenetic relationships among three subspecies of banteng, Burma banteng Bos javanicus birmanicus in mainland Southeast Asia, Javan banteng Bos javanicus javanicus in Java, and Bornean banteng Bos javanicus lowi in Borneo, and the presence/absence of interbreeding between wild Bornean banteng and domestic cattle in Sabah, Malaysia, were investigated by partial sequences of cytochrome b and D-loop of mitochondrial DNA. The results show that genetic distance of the Bornean banteng are relatively close to the gaur Bos gaurus/gayal Bos frontalis (the cytochrome b, 0.004–0.025; the D-loop, 0.012–0.021) followed by Burma banteng (the cytochrome b, 0.027–0.035; the D-loop, 0.040–0.045), and kouprey Bos sauveli (the cytochrome b, 0.031–0.035; the D-loop, 0.037–0.042). There are much greater distances between Bornean banteng and domestic cattle, Bos taurus and Bos indicus (the cytochrome b, 0.059–0.076; the D-loop, 0.081–0.090). These results suggest that the Bornean banteng diverged genetically from other banteng subspecies and that the wild Bornean banteng from this study are pure strain and have high conservation value

    Recent Surveys in the Forests of Ulu Segama Malua, Sabah, Malaysia, Show That Orang-utans (P. p. morio) Can Be Maintained in Slightly Logged Forests

    Get PDF
    BACKGROUND: Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation. METHODOLOGY/PRINCIPAL FINDINGS: In 2007, the "Kinabatangan Orang-utan Conservation Project" (KOCP) conducted aerial and ground surveys of orang-utan (Pongo pygmaeus morio) nests in the commercial forest reserves of Ulu Segama Malua (USM) in eastern Sabah, Malaysian Borneo. Compared with previous estimates obtained in 2002, our recent data clearly shows that orang-utan populations can be maintained in forests that have been lightly and sustainably logged. However, forests that are heavily logged or subjected to fast, successive coupes that follow conventional extraction methods, exhibit a decline in orang-utan numbers which will eventually result in localized extinction (the rapid extraction of more than 100 m(3) ha(-1) of timber led to the crash of one of the surveyed sub-populations). Nest distribution in the forests of USM indicates that orang-utans leave areas undergoing active disturbance and take momentarily refuge in surrounding forests that are free of human activity, even if these forests are located above 500 m asl. Displaced individuals will then recolonize the old-logged areas after a period of time, depending on availability of food sources in the regenerating areas. CONCLUSION/SIGNIFICANCE: These results indicate that diligent planning prior to timber extraction and the implementation of reduced-impact logging practices can potentially be compatible with great ape conservation

    Number of orang-utans living in the USM forests estimated from the combination of ground and aerial surveys (See Figure 2 for the exact locations of the areas).

    No full text
    <p>Number of orang-utans living in the USM forests estimated from the combination of ground and aerial surveys (See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011510#pone-0011510-g002" target="_blank">Figure 2</a> for the exact locations of the areas).</p

    Location, main characteristics, orang-utan densities (with associated Coefficient of Variation) of all ground surveys conducted in the USM forests.

    No full text
    <p>Legend: Deg.: degraded; Overdeg: over-degraded; asl: above sea level; n/a: not available; Nb plots: number of botanical plots; CV: coefficient of variation obtained by Distance.</p

    Percentage of utilization of the eight most common tree families and taxa used for nesting and percentage of tree abundance recorded in 69 botanical plots in three different areas: Malua, Segama and North Ulu Segama.

    No full text
    <p>Percentage of utilization of the eight most common tree families and taxa used for nesting and percentage of tree abundance recorded in 69 botanical plots in three different areas: Malua, Segama and North Ulu Segama.</p
    corecore