30 research outputs found
Brain Correlates of Persistent Postural-Perceptual Dizziness: A Review of Neuroimaging Studies.
Persistent postural-perceptual dizziness (PPPD), defined in 2017, is a vestibular disorder characterized by chronic dizziness that is exacerbated by upright posture and exposure to complex visual stimuli. This review focused on recent neuroimaging studies that explored the pathophysiological mechanisms underlying PPPD and three conditions that predated it. The emerging picture is that local activity and functional connectivity in multimodal vestibular cortical areas are decreased in PPPD, which is potentially related to structural abnormalities (e.g., reductions in cortical folding and grey-matter volume). Additionally, connectivity between the prefrontal cortex, which regulates attentional and emotional responses, and primary visual and motor regions appears to be increased in PPPD. These results complement physiological and psychological data identifying hypervigilant postural control and visual dependence in patients with PPPD, supporting the hypothesis that PPPD arises from shifts in interactions among visuo-vestibular, sensorimotor, and emotional networks that overweigh visual over vestibular inputs and increase the effects of anxiety-related mechanisms on locomotor control and spatial orientation
Neuroticism modulates brain visuo-vestibular and anxiety systems during a virtual rollercoaster task.
Different lines of research suggest that anxiety-related personality traits may influence the visual and vestibular control of balance, although the brain mechanisms underlying this effect remain unclear. To our knowledge, this is the first functional magnetic resonance imaging (fMRI) study that investigates how individual differences in neuroticism and introversion, two key personality traits linked to anxiety, modulate brain regional responses and functional connectivity patterns during a fMRI task simulating self-motion. Twenty-four healthy individuals with variable levels of neuroticism and introversion underwent fMRI while performing a virtual reality rollercoaster task that included two main types of trials: (1) trials simulating downward or upward self-motion (vertical motion), and (2) trials simulating self-motion in horizontal planes (horizontal motion). Regional brain activity and functional connectivity patterns when comparing vertical versus horizontal motion trials were correlated with personality traits of the Five Factor Model (i.e., neuroticism, extraversion-introversion, openness, agreeableness, and conscientiousness). When comparing vertical to horizontal motion trials, we found a positive correlation between neuroticism scores and regional activity in the left parieto-insular vestibular cortex (PIVC). For the same contrast, increased functional connectivity between the left PIVC and right amygdala was also detected as a function of higher neuroticism scores. Together, these findings provide new evidence that individual differences in personality traits linked to anxiety are significantly associated with changes in the activity and functional connectivity patterns within visuo-vestibular and anxiety-related systems during simulated vertical self-motion. Hum Brain Mapp 38:715-726, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.Italian University Ministry. Grant Number: PRIN grant 2010MEFNF7_002 ; Italian Space Agency. Grant Number: COREA grant 2013-084-R.0This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/hbm.2341
Functional connectome of the five-factor model of personality
A key objective of the emerging field of personality neuroscience is to link the great variety of the enduring dispositions of human behaviour with reliable markers of brain function. This can be achieved by analyzing large sets of data with methods that model whole-brain connectivity patterns. To meet these expectations, we exploited a large repository of personality and neuroimaging measures made publicly available via the Human Connectome Project.
Using connectomic analyses based on graph theory, we computed global and local indices of functional connectivity (e.g., nodal strength, efficiency, clustering, betweenness centrality) and related these metrics to the five-factor-model (FFM) personality traits (i.e., neuroticism, extraversion, openness, agreeableness, and conscientiousness). The maximal information coefficient was used to assess for linear and non-linear statistical dependencies across the graph ‘nodes’, which were defined as distinct brain circuits identified via independent component analysis. Multi-variate regression models and ‘train/test’ machine-learning approaches were also used to examine the associations between FFM traits and connectomic indices as well as to test for the generalizability of the main findings, whilst accounting for age and sex differences.
Conscientiousness was the sole FFM trait linked to measures of higher functional connectivity in the fronto-parietal and default mode networks. This might provide a mechanistic explanation of the behavioural observation that conscientious people are reliable and efficient in goal-setting or planning.
Our study provides new inputs to understanding the neurological basis of personality and contributes to the development of more realistic models of the brain dynamics that mediate personality differences.Roberta Riccelli is funded by the University “Tor Vergata” of Rome, Italy, whereas Luca Passamonti is funded by the Medical Research Council (MRC) (MR/P01271X/1) at the University of Cambridge, UK. Antonio Terracciano is supported by the National Institute On Aging of the National Institutes of Health under Award Number R01AG053297 and R03AG051960. Iole Indovina is funded by the Italian Ministry of Health (PE-2013-02355372). Data collection and sharing for this project was provided by the MGH-USC Human Connectome Project (HCP; Principal Investigators: Bruce Rosen, MD, PhD, Arthur W. Toga, PhD, Van J. Weeden, MD). The HCP project is supported by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS) (Principal Investigators: Bruce Rosen, MD, PhD, Martinos Center at Massachusetts General Hospital; Arthur W. Toga, PhD, University of Southern California, Van J. Weeden, MD, Martinos Center at Massachusetts General Hospital)
Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high-spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area-parabrachial pigmented, microcellular tegmental-parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus-alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders
Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness.
BACKGROUND: Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. METHODS: We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. RESULTS: HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. CONCLUSION: We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the visual cortex, which correlated with severity of dizziness handicap, may be a neural correlate of visual dependence
Recommended from our members
Brain responses to virtual reality visual motion stimulation are affected by neurotic personality traits in patients with persistent postural-perceptual dizziness
Objective: Persistent postural perceptual dizziness (PPPD) is a common vestibular disorder of persistent dizziness and unsteadiness, exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Previous functional magnetic resonance imaging (fMRI) studies found dysfunctional activity in the visual-vestibular cortices in patients with PPPD. Clinical studies showed that the anxiety-related personality traits of neuroticism and introversion may predispose individuals to PPPD. However, the effects of these traits on brain function in patients with PPPD versus healthy controls (HCs) have not been studied.
Methods: To investigate potential differential effects of neuroticism and introversion on functioning of their visuo-vestibular networks, 15 patients with PPPD and 15 HCs matched for demographics and motion sickness susceptibility underwent fMRI during virtual reality simulation of a rollercoaster ride in vertical and horizontal directions.
Results: Neuroticism positively correlated with activity in the inferior frontal gyrus (IFg), and enhanced connectivity between the IFg and occipital regions in patients with PPPD relative to HCs during vertical versus horizontal motion comparison.
Conclusions: In patients with PPPD, neuroticism was associated with increased activity and connectivity of neural networks that mediate attention to visual motion cues during vertical motion, potentially altering the processing of visual inputs related to balance control
Brain responses to virtual reality visual motion stimulation are affected by neurotic personality traits in patients with persistent postural-perceptual dizziness
Persistent postural perceptual dizziness (PPPD) is a common vestibular disorder of persistent dizziness and unsteadiness, exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Previous functional magnetic resonance imaging (fMRI) studies found dysfunctional activity in the visual-vestibular cortices in patients with PPPD. Clinical studies showed that the anxiety-related personality traits of neuroticism and introversion may predispose individuals to PPPD. However, the effects of these traits on brain function in patients with PPPD versus healthy controls (HCs) have not been studied
Recommended from our members
Variability and Reproducibility of Directed and Undirected Functional MRI Connectomes in the Human Brain.
A growing number of studies are focusing on methods to estimate and analyze the functional connectome of the human brain. Graph theoretical measures are commonly employed to interpret and synthesize complex network-related information. While resting state functional MRI (rsfMRI) is often employed in this context, it is known to exhibit poor reproducibility, a key factor which is commonly neglected in typical cohort studies using connectomics-related measures as biomarkers. We aimed to fill this gap by analyzing and comparing the inter- and intra-subject variability of connectivity matrices, as well as graph-theoretical measures, in a large (n = 1003) database of young healthy subjects which underwent four consecutive rsfMRI sessions. We analyzed both directed (Granger Causality and Transfer Entropy) and undirected (Pearson Correlation and Partial Correlation) time-series association measures and related global and local graph-theoretical measures. While matrix weights exhibit a higher reproducibility in undirected, as opposed to directed, methods, this difference disappears when looking at global graph metrics and, in turn, exhibits strong regional dependence in local graphs metrics. Our results warrant caution in the interpretation of connectivity studies, and serve as a benchmark for future investigations by providing quantitative estimates for the inter- and intra-subject variabilities in both directed and undirected connectomic measures.MR
Path integration in 3D from visual motion cues: A human fMRI study
While neural correlates of path integration on a yaw plane have been studied extensively, much less is known about path integration in three-dimensions (3D). Here we used fMRI during virtual navigation within tunnels in pseudo-3D. We found that the same visual motion stimuli are encoded differently in the brain depending on whether they represent displacements within the yaw plane or within the pitch plane. The yaw plane is more represented in the hippocampus while the pitch plane is more represented in the angular gyrus (AG) and in the posterior inferior temporal gyrus (pITG), known to be involved in 3D space encoding. In addition, a region in pITG, located just above the previous one, showed two different patterns with multi-voxel analysis, separately coding for the pitch and yaw planes. These results suggest that information encoded within pITG about the yaw plane may be exchanged with the hippocampus, while information about the pitch plane may be exchanged with the AG