22 research outputs found

    Multipole tensor analysis of the resonant x-ray scattering by quadrupolar and magnetic order in DyB2C2

    Full text link
    Resonant x-ray scattering (RXS) experiment has been performed for the (3 0 1.5) superlattice reflection in the antiferroquadrupolar and antiferromagnetic phase of DyB2C2. Azimuthal-angle dependence of the resonance enhanced intensities for both dipolar (E1) and quadrupolar (E2) resonant processes has been measured precisely with polarization analysis. Every scattering channel exhibits distinctive azimuthal dependence, differently from the symmetric reflection at (0 0 0.5) which was studied previously. We have analyzed the results using a theory developed by Lovesey et al., which directly connects atomic tensors with the cross-section of RXS. The fitting results indicate that the azimuthal dependences can be explained well by the atomic tensors up to rank 2. Rank 3 and rank 4 tensors are reflected in the data very little. In addition, The coupling scheme among the 4f quadrupolar moment, 5d ortitals, and the lattice has been determined from the interference among the Thomson scattering from the lattice distortion and the resonant scatterings of E1 and E2 processes. It has also been established from the RXS of the (3 0 1.5) reflection that the canting of the 4f quadrupolar moments exists up to T_Q. We also discuss a possible wavefunction of the ground state from the point-charge model calculation.Comment: 9 pages, 10 figure

    Microscopic Approach to Magnetism and Superconductivity of ff-Electron Systems with Filled Skutterudite Structure

    Full text link
    In order to gain a deep insight into ff-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. For each case of nn=1\sim13, where nn is the number of ff electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of ff electron. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the jj-jj coupling scheme by using the NRG method. Then, we construct an orbital degenerate Hubbard model based on the jj-jj coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of nn=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl

    Intra- site 4f-5d electronic correlations in the quadrupolar model of the gamma-alpha phase transition in Ce

    Full text link
    As a possible mechanism of the γα\gamma-\alpha phase transition in pristine cerium a change of the electronic density from a disordered state with symmetry Fm-3m to an ordered state Pa-3 has been proposed. Here we include on-site and inter- site electron correlations involving one localized 4f-electron and one conduction 5d-electron per atom. The model is used to calculate the crystal field of γ\gamma-Ce and the temperature evolution of the mean-field of α\alpha-Ce. The formalism can be applied to crystals where quadrupolar ordering involves several electrons on the same site.Comment: 12 pages, 2 figures, 4 tables, submitted to Phys. Rev.

    Neutron-diffraction study of the magnetic structure of GdB 2 C 2

    No full text

    Magnetic structure of tetragonal TmB 2 C 2

    No full text
    corecore