9 research outputs found

    Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury

    No full text
    Background: Olfactory ensheathing cells (OEC) are considered to be the most suitable cells for transplantation therapy in the central nervous system (CNS) because of their unique ability to help axonal regrowth and remyelination in the CNS. However, there are conflicting reports about the success rates with OEC. Aim: This study was undertaken to evaluate the therapeutic effect of OEC in rat models using different cell dosages. Material and Methods: OECs harvested from the olfactory mucosa of adult white Albino rats were cultured. Spinal cord injury (SCI) was inflicted at the lower thoracic segment in a control and test group of rats. Two weeks later, OECs were delivered in and around the injured spinal cord segment of the test group of the rats. The outcome in terms of locomotor recovery of limb muscles was assessed on a standard rating scale and by recording the motor-evoked potentials from the muscles during transcranial electrical stimulation. Finally, the animals were sacrificed to assess the structural repair by light microscopy. Statistical Analysis: Wilcoxon signed rank test and Mann-Whitney U-test were used to compare the data in the control and the test group of animals. A P value of <0.05 was considered significant. Results: The study showed a moderate but significant recovery of the injured rats after OEC transplantation (P=0.005). Conclusion: Transplantation of OECs along with olfactory nerve fibroblasts improved the motor recovery in rat models with SCI

    Not Available

    No full text
    Not AvailableSewage sludge (SS), a highly heterogeneous semisolid fraction of sewage water (about 1% of the sewage water), contains various amounts of nitrogen (N) and phosphorus (P) as well as trace elements such as cadmium (Cd), lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) with extremely variable physical and chemical compositions. Application of SS improves soil properties, increases yield and simultaneously increases trace metal content in soil and plants. The difficulty in handling, transporting and applying SS and its adverse effect, especially trace metal content in soil and plant, can be overcome by SS–coir pith pelletization (SSCP) or mixing with sewage sledge–coir pith mixture (SSCM). A study was undertaken to evaluate the prepared SSCM and SSCP (1:1 ratio of SS and coir pith) along with SS on dry matter yield, trace metal content in soil and plant parts. The results showed that increased rates of application of SS or SSCM or SSCP increased the green and dry fodder yield of forage maize. Application of SS as either SSCM or SSCP at 1.2 and 2.4 g pot−1 significantly reduced the trace metal content diethylene triamine pentaacetic acid (DTPA extractable) in soil and plant parts (leaves steam and root) compared to SS application. Therefore, in order to reduce the bioavailability of trace metal in soil and its uptake by plant, application of SSCM or SSCP at 1.2 or 2.4 g pot−1 proved to be a better option than SS applicationNot Availabl
    corecore