16 research outputs found

    Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury

    Get PDF
    BackgroundReduced lower limb blood flow and resistive hemodynamic conditions potentially promote aortic inflammation and aneurysmal degeneration. We used abdominal ultrasonography, magnetic resonance imaging, and computational flow modeling to determine the relationship between reduced infrarenal aortic blood flow in chronic spinal cord injury (SCI) subjects and risk for abdominal aortic aneurysm (AAA) disease.MethodsAortic diameter in consecutive SCI subjects (n = 123) was determined via transabdominal ultrasonography. Aortic anatomic and physiologic data were acquired via magnetic resonance angiography (MRA; n = 5) and cine phase-contrast magnetic resonance flow imaging (n = 4) from SCI subjects whose aortic diameter was less than 3.0 cm by ultrasonography. Computational flow models were constructed from magnetic resonance data sets. Results were compared with those obtained from ambulatory control subjects (ultrasonography, n = 129; MRA/phase-contrast magnetic resonance flow imaging, n = 6) who were recruited at random from a larger pool of risk factor–matched individuals without known AAA disease.ResultsAge, sex distribution, and smoking histories were comparable between the SCI and control groups. In the SCI group, time since injury averaged 26 ± 13 years (mean ± SD). Aortic diameter was larger (P < .01), and the prevalence of large (≥2.5 cm; P < .01) or aneurysmal (≥3.0 cm; P < .05) aortas was greater in SCI subjects. Paradoxically, common iliac artery diameters were reduced in SCI subjects (<1.0 cm; 48% SCI vs 26% control; P < .0001). Focal preaneurysmal enlargement was noted in four of five SCI subjects by MRA. Flow modeling revealed normal flow volume, biphasic and reduced oscillatory flow, slower pressure decay, and reduced wall shear stress in the SCI infrarenal aorta.ConclusionsCharacteristic aortoiliac hemodynamic and morphologic adaptations occur in response to chronic SCI. Slower aortic pressure decay and reduced wall shear stress after SCI may contribute to mural degeneration, enlargement, and an increased prevalence of AAA disease

    True heterotopic bone in the paralyzed patient

    Full text link
    In past years the clinical and radiologic presentation of true heterotopic bone in the paralyzed patient has been confused with osteomyelitis, neoplasm, trauma, and thrombophlebitis. We reviewed 376 paralyzed patients' roentgenographic files and found 78 patients with soft tissue ossification unassociated with infection, neoplasm, or underlying fractures, which we called true heterotopic bone. From this population the usual spectrum of radiologic findings is described, so that the radiologist may separate roentgenographically a group of patients from other types of ectopic ossification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46816/1/256_2004_Article_BF00347167.pd
    corecore