45 research outputs found

    Incremental Sparse GP Regression for Continuous-time Trajectory Estimation & Mapping

    Get PDF
    Recent work on simultaneous trajectory estimation and mapping (STEAM) for mobile robots has found success by representing the trajectory as a Gaussian process. Gaussian processes can represent a continuous-time trajectory, elegantly handle asynchronous and sparse measurements, and allow the robot to query the trajectory to recover its estimated position at any time of interest. A major drawback of this approach is that STEAM is formulated as a batch estimation problem. In this paper we provide the critical extensions necessary to transform the existing batch algorithm into an extremely efficient incremental algorithm. In particular, we are able to vastly speed up the solution time through efficient variable reordering and incremental sparse updates, which we believe will greatly increase the practicality of Gaussian process methods for robot mapping and localization. Finally, we demonstrate the approach and its advantages on both synthetic and real datasets.Comment: 10 pages, 10 figure

    Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints

    Full text link
    Online decision making under uncertainty in partially observable domains, also known as Belief Space Planning, is a fundamental problem in robotics and Artificial Intelligence. Due to an abundance of plausible future unravelings, calculating an optimal course of action inflicts an enormous computational burden on the agent. Moreover, in many scenarios, e.g., information gathering, it is required to introduce a belief-dependent constraint. Prompted by this demand, in this paper, we consider a recently introduced probabilistic belief-dependent constrained POMDP. We present a technique to adaptively accept or discard a candidate action sequence with respect to a probabilistic belief-dependent constraint, before expanding a complete set of future observations samples and without any loss in accuracy. Moreover, using our proposed framework, we contribute an adaptive method to find a maximal feasible return (e.g., information gain) in terms of Value at Risk for the candidate action sequence with substantial acceleration. On top of that, we introduce an adaptive simplification technique for a probabilistically constrained setting. Such an approach provably returns an identical-quality solution while dramatically accelerating online decision making. Our universal framework applies to any belief-dependent constrained continuous POMDP with parametric beliefs, as well as nonparametric beliefs represented by particles. In the context of an information-theoretic constraint, our presented framework stochastically quantifies if a cumulative information gain along the planning horizon is sufficiently significant (e.g. for, information gathering, active SLAM). We apply our method to active SLAM, a highly challenging problem of high dimensional Belief Space Planning. Extensive realistic simulations corroborate the superiority of our proposed ideas

    Hybrid Belief Pruning with Guarantees for Viewpoint-Dependent Semantic SLAM

    Full text link
    Semantic simultaneous localization and mapping is a subject of increasing interest in robotics and AI that directly influences the autonomous vehicles industry, the army industries, and more. One of the challenges in this field is to obtain object classification jointly with robot trajectory estimation. Considering view-dependent semantic measurements, there is a coupling between different classes, resulting in a combinatorial number of hypotheses. A common solution is to prune hypotheses that have a sufficiently low probability and to retain only a limited number of hypotheses. However, after pruning and renormalization, the updated probability is overconfident with respect to the original probability. This is especially problematic for systems that require high accuracy. If the prior probability of the classes is independent, the original normalization factor can be computed efficiently without pruning hypotheses. To the best of our knowledge, this is the first work to present these results. If the prior probability of the classes is dependent, we propose a lower bound on the normalization factor that ensures cautious results. The bound is calculated incrementally and with similar efficiency as in the independent case. After pruning and updating based on the bound, this belief is shown empirically to be close to the original belief.Comment: 8 pages, 12 figures, accepted to IRO

    Measurement Simplification in \rho-POMDP with Performance Guarantees

    Full text link
    Decision making under uncertainty is at the heart of any autonomous system acting with imperfect information. The cost of solving the decision making problem is exponential in the action and observation spaces, thus rendering it unfeasible for many online systems. This paper introduces a novel approach to efficient decision-making, by partitioning the high-dimensional observation space. Using the partitioned observation space, we formulate analytical bounds on the expected information-theoretic reward, for general belief distributions. These bounds are then used to plan efficiently while keeping performance guarantees. We show that the bounds are adaptive, computationally efficient, and that they converge to the original solution. We extend the partitioning paradigm and present a hierarchy of partitioned spaces that allows greater efficiency in planning. We then propose a specific variant of these bounds for Gaussian beliefs and show a theoretical performance improvement of at least a factor of 4. Finally, we compare our novel method to other state of the art algorithms in active SLAM scenarios, in simulation and in real experiments. In both cases we show a significant speed-up in planning with performance guarantees
    corecore