38 research outputs found

    İNTERNET TABANLI BULANIK GİRİŞLİ UZMAN SİSTEM TASARIMIYLA MİKROBİYOLOJİ TAHLİL SONUÇLARININ YORUMLANMASI

    Get PDF
    Mikrobiyolojide, tanıya ulaşmak için muayene, sorgulama ve laboratuar yöntemlerine başvurulur. Laboratuar tetkikleri ve bu tetkiklerin değerlendirilmesi hastalık tanısında ayrı bir önem teşkil etmektedir. Bu çalışmada, gerçekleştirilen web ara yüzlü bulanık girişli uzman sistem tasarımı ile mikrobiyoloji laboratuarı tetkikleri analiz edilmiştir. Tahlil değer aralıklarına (düşük, normal, yüksek) göre risk faktörlerinin belirlenmesi ve kullanıcının anlamını bilmediği terimlerin anlaşılacak şekilde kullanıcıların bilgisine sunulması sağlanmıştır. Yapılan çalışmanın veri tabanı uzman doktorlarla oluşturulmuş ve bir ara yüz yazılarak sistem web ortamında yayınlanmıştır. Kullanıcılar, ‘Değerlendirmeyi nasıl buldunuz’ kısmından tasarlanan sistemi değerlendirmişlerdir. Bu sayede sistemin başarı oranı belirlenmiştir. Tasarlanan sistemi 617 kullanıcı değerlendirmiştir. Değerlendirme sonucunda tasarlanan sistemin, bayanlarda %86, erkeklerde %91 ve genelde de %89 başarı oranıyla değerlendirme yaptığı belirlenmiştir

    Evaluating glioma growth predictions as a forward ranking problem

    Full text link
    The problem of tumor growth prediction is challenging, but promising results have been achieved with both model-driven and statistical methods. In this work, we present a framework for the evaluation of growth predictions that focuses on the spatial infiltration patterns, and specifically evaluating a prediction of future growth. We propose to frame the problem as a ranking problem rather than a segmentation problem. Using the average precision as a metric, we can evaluate the results with segmentations while using the full spatiotemporal prediction. Furthermore, by separating the model goodness-of-fit from future predictive performance, we show that in some cases, a better fit of model parameters does not guarantee a better the predictive power

    Evaluating the predictive value of glioma growth models for low-grade glioma after tumor resection

    Get PDF
    Tumor growth models have the potential to model and predict the spatiotemporal evolution of glioma in individual patients. Infiltration of glioma cells is known to be faster along the white matter tracts, and therefore structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can be used to inform the model. However, applying and evaluating growth models in real patient data is challenging. In this work, we propose to formulate the problem of tumor growth as a ranking problem, as opposed to a segmentation problem, and use the average precision (AP) as a performance metric. This enables an evaluation of the spatial pattern that does not require a volume cut-off value. Using the AP metric, we evaluate diffusion-proliferation models informed by structural MRI and DTI, after tumor resection. We applied the models to a unique longitudinal dataset of 14 patients with low-grade glioma (LGG), who received no treatment after surgical resection, to predict the recurrent tumor shape after tumor resection. The diffusion models informed by structural MRI and DTI showed a small but significant increase in predictive performance with respect to homogeneous isotropic diffusion, and the DTI-informed model reached the best predictive performance. We conclude there is a significant improvement in the prediction of the recurrent tumor shape when using a DTI-informed anisotropic diffusion model with respect to istropic diffusion, and that the AP is a suitable metric to evaluate these models. All code and data used in this publication are made publicly available.</p

    Topographical Mapping of 436 Newly Diagnosed IDH Wildtype Glioblastoma With vs. Without MGMT Promoter Methylation

    Get PDF
    Introduction: O6-methylguanine-methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase (IDH) mutation status are important prognostic factors for patients with glioblastoma. There are conflicting reports about a differential topographical distribution of glioblastoma with vs. without MGMT promoter methylation, possibly caused by molecular heterogeneity in glioblastoma populations. We initiated this study to re-evaluate the topographical distribution of glioblastoma with vs. without MGMT promoter methylation in light of the updated WHO 2016 classification. Methods: Preoperative T2-weighted/FLAIR and postcontrast T1-weighted MRI scans of patients aged 18 year or older with IDH wildtype glioblastoma were collected. Tumors were semi-automatically segmented, and the topographical distribution between glioblastoma with vs. without MGMT promoter methylation was visualized using frequency heatmaps. Then, voxel-wise differences were analyzed using permutation testing with Threshold Free Cluster Enhancement. Results: Four hundred thirty-six IDH wildtype glioblastoma patients were included; 211 with and 225 without MGMT promoter methylation. Visual examination suggested that when compared with MGMT unmethylated glioblastoma, MGMT methylated glioblastoma were more frequently located near bifrontal and left occipital periventricular area and less frequently near the right occipital periventricular area. Statistical analyses, however, showed no significant difference in topographical distribution between MGMT methylated vs. MGMT unmethylated glioblastoma. Conclusions: This study re-evaluated the

    The Association Between the Extent of Glioblastoma Resection and Survival in Light of MGMT Promoter Methylation in 326 Patients With Newly Diagnosed IDH-Wildtype Glioblastoma

    Get PDF
    Background: The association between contrast enhanced (CE) and non-contrast enhanced (NCE) tumor resection and survival in patients with glioblastoma in relation to molecular subtypes is poorly understood. The aim of this study was to assess the association between CE and NCE tumor resection and survival in light of MGMT promoter methylation in newly diagnosed IDH-wildtype glioblastoma. Materials and methods: Patients with newly diagnosed IDH-wildtype glioblastoma who underwent surgery were eligible. CE and NCE tumor volumes were assessed on pre- and post-operative MRI scans and extent of resection was calc

    Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T

    Get PDF
    Objective: Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity. Materials & Methods: A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym)

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
    corecore