3 research outputs found

    Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention.

    No full text
    The exact route of iron through the kidney and its regulation during iron overload are not completely elucidated. Under physiologic conditions, non-transferrin and transferrin bound iron passes the glomerular filter and is reabsorbed through kidney epithelial cells, so that hardly any iron is found in the urine. To study the route of iron reabsorption through the kidney, we analyzed the location and regulation of iron metabolism related proteins in kidneys of mice with iron overload, elicited by iron dextran injections. Transferrin Receptor 1 was decreased as expected, following iron overload. In contrast, the multi-ligand hetero-dimeric receptor-complex megalin/cubilin, which also mediates the internalization of transferrin, was highly up-regulated. Moreover, with increasing iron, intracellular ferritin distribution shifted in renal epithelium from an apical location to a punctate distribution throughout the epithelial cells. In addition, in contrast to many other tissues, the iron exporter ferroportin was not reduced by iron overload in the kidney. Iron accumulated mainly in interstitial macrophages, and more prominently in the medulla than in the cortex. This suggests that despite the reduction of Transferrin Receptor 1, alternative pathways may effectively mediate re-absorption of iron that cycles through the kidney during parenterally induced iron-overload. The most iron consuming process of the body, erythropoiesis, is regulated by the renal erythropoietin producing cells in kidney interstitium. We propose, that the efficient re-absorption of iron by the kidney, also during iron overload enables these cells to sense systemic iron and regulate its usage based on the systemic iron state

    Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model

    No full text
    Abstract Alzheimer’s disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-β (Aβ) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aβ peptides, and Aβ build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics
    corecore