48 research outputs found
Bayesian Analysis of Linear Contracts
We provide a justification for the prevalence of linear (commission-based)
contracts in practice under the Bayesian framework. We consider a hidden-action
principal-agent model, in which actions require different amounts of effort,
and the agent's cost per-unit-of-effort is private. We show that linear
contracts are near-optimal whenever there is sufficient uncertainty in the
principal-agent setting
Incomplete Information VCG Contracts for Common Agency
We study contract design for welfare maximization in the well-known “common agency” model introduced in 1986 by Bernheim and Whinston. This model combines the challenges of coordinating multiple principals with the fundamental challenge of contract design: that principals have incomplete information of the agent’s choice of action. Our goal is to design contracts that satisfy truthfulness of the principals, welfare maximization by the agent, and two fundamental properties of individual rationality (IR) for the principals and limited liability (LL) for the agent. Our results reveal an inherent impossibility. Whereas for every common agency setting there exists a truthful and welfare-maximizing contract, which we refer to as “incomplete information Vickrey–Clarke–Groves contracts,” there is no such contract that also satisfies IR and LL for all settings. As our main results, we show that the class of settings for which there exists a contract that satisfies truthfulness, welfare maximization, LL, and IR is identifiable by a polynomial-time algorithm. Furthermore, for these settings, we design a polynomial-time computable contract: given valuation reports from the principals, it returns, if possible for the setting, a payment scheme for the agent that constitutes a contract with all desired properties. We also give a sufficient graph-theoretic condition on the population of principals that ensures the existence of such a contract and two truthful and welfare-maximizing contracts, in which one satisfies LL and the other one satisfies IR.</p
Incomplete Information VCG Contracts for Common Agency
We study contract design for welfare maximization in the well-known “common agency” model introduced in 1986 by Bernheim and Whinston. This model combines the challenges of coordinating multiple principals with the fundamental challenge of contract design: that principals have incomplete information of the agent’s choice of action. Our goal is to design contracts that satisfy truthfulness of the principals, welfare maximization by the agent, and two fundamental properties of individual rationality (IR) for the principals and limited liability (LL) for the agent. Our results reveal an inherent impossibility. Whereas for every common agency setting there exists a truthful and welfare-maximizing contract, which we refer to as “incomplete information Vickrey–Clarke–Groves contracts,” there is no such contract that also satisfies IR and LL for all settings. As our main results, we show that the class of settings for which there exists a contract that satisfies truthfulness, welfare maximization, LL, and IR is identifiable by a polynomial-time algorithm. Furthermore, for these settings, we design a polynomial-time computable contract: given valuation reports from the principals, it returns, if possible for the setting, a payment scheme for the agent that constitutes a contract with all desired properties. We also give a sufficient graph-theoretic condition on the population of principals that ensures the existence of such a contract and two truthful and welfare-maximizing contracts, in which one satisfies LL and the other one satisfies IR.</p
Assessing mucosal inflammation in a DSS-induced colitis mouse model by MR colonography
Inflammatory bowel disease (IBD) is characterized by a chronic flaring inflammation of the gastrointestinal tract. To determine disease activity, the inflammatory state of the colon should be assessed. Endoscopy in patients with IBD aids visualization of mucosal inflammation. However, because the mucosa is fragile, there is a significant risk of perforation. In addition, the technique is based on grading of the entire colon, which is highly operator-dependent. An improved, noninvasive, objective magnetic resonance imaging (MRI) technique will effectively assess pathologies in the small intestinal mucosa, more specifically, along the colon, and the bowel wall and surrounding structures. Here, dextran sodium sulfate polymer induced acute colitis in mice that was subsequently characterized by multisection magnetic resonance colonography. This study aimed to develop a noninvasive, objective, quantitative MRI technique for detecting mucosal inflammation in a dextran sodium sulfate–induced colitis mouse model. MRI results were correlated with endoscopic and histopathological evaluations.</jats:p
Incomplete Information VCG Contracts for Common Agency
The “common agency” model, introduced by Bernheim and Whinston in 1986 combines the fundamental challenge of the principal–agent model with the challenges of coordinating multiple principals. In “Incomplete information VCG contracts for common agency,” Alon, Talgam-Cohen, Lavi, and Shamash show that the class of common agency settings for which there exists a contract that guarantees truthfulness of all principals, welfare maximization, and the two standard properties from contract theory—limited liability for the agent and individual rationality for the principals—is identifiable by a polynomial-time algorithm. Furthermore, for these settings, the authors design a polynomial-time computable contract: given valuation reports from the principals, it returns, if possible for the setting, a payment scheme for the agent that constitutes a contract with all desired properties
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior
Admixture Mapping Scans Identify a Locus Affecting Retinal Vascular Caliber in Hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) Study
Retinal vascular caliber provides information about the structure and health of the microvascular system and is associated with cardiovascular and cerebrovascular diseases. Compared to European Americans, African Americans tend to have wider retinal arteriolar and venular caliber, even after controlling for cardiovascular risk factors. This has suggested the hypothesis that differences in genetic background may contribute to racial/ethnic differences in retinal vascular caliber. Using 1,365 ancestry-informative SNPs, we estimated the percentage of African ancestry (PAA) and conducted genome-wide admixture mapping scans in 1,737 African Americans from the Atherosclerosis Risk in Communities (ARIC) study. Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) representing summary measures of retinal arteriolar and venular caliber, respectively, were measured from retinal photographs. PAA was significantly correlated with CRVE (ρ = 0.071, P = 0.003), but not CRAE (ρ = 0.032, P = 0.182). Using admixture mapping, we did not detect significant admixture association with either CRAE (genome-wide score = −0.73) or CRVE (genome-wide score = −0.69). An a priori subgroup analysis among hypertensive individuals detected a genome-wide significant association of CRVE with greater African ancestry at chromosome 6p21.1 (genome-wide score = 2.31, locus-specific LOD = 5.47). Each additional copy of an African ancestral allele at the 6p21.1 peak was associated with an average increase in CRVE of 6.14 µm in the hypertensives, but had no significant effects in the non-hypertensives (P for heterogeneity <0.001). Further mapping in the 6p21.1 region may uncover novel genetic variants affecting retinal vascular caliber and further insights into the interaction between genetic effects of the microvascular system and hypertension
PoA of Simple Auctions with Interdependent Values
We expand the literature on the price of anarchy (PoA) of simultaneous item auctions by considering settings with correlated values; we do this via the fundamental economic model of interdependent values (IDV).
It is well-known that in multi-item settings with private values, correlated values can lead to bad PoA, which can be polynomially large in the number of agents~n.
In the more general model of IDV, we show that the PoA can be polynomially large even in single-item settings.
On the positive side, we identify a natural condition on information dispersion in the market, which enables good PoA guarantees.
Under this condition, we show that for single-item settings, the PoA of standard mechanisms degrades gracefully.
For settings with multiple items we show a separation between two domains:
If there are more buyers, we devise a new simultaneous item auction with good PoA, under limited information asymmetry.
To the best of our knowledge, this is the first positive PoA result for correlated values in multi-item settings.
The main technical difficulty in establishing this result is that the standard tool for establishing PoA results --- the smoothness framework --- is unsuitable for IDV settings, and so we must introduce new techniques to address the unique challenges imposed by such settings.
In the domain of more items, we establish impossibility results even for surprisingly simple scenarios