3 research outputs found

    Aerobic physical exercise for adult patients with haematological malignancies

    No full text
    Background Although people with haematological malignancies have to endure long phases of therapy and immobility, which is known to diminish their physical performance level, the advice to rest and avoid intensive exercises is still common practice. This recommendation is partly due to the severe anaemia and thrombocytopenia from which many patients suffer. The inability to perform activities of daily living restricts them, diminishes their quality of life and can influence medical therapy. Objectives In this update of the original review (published in 2014) our main objective was to re-evaluate the efficacy, safety and feasibility of aerobic physical exercise for adults suffering from haematological malignancies considering the current state of knowledge. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 7) and MEDLINE (1950 to July 2018) trials registries (ISRCTN, EU clinical trials register and clinicaltrials.gov) and conference proceedings. We did not apply any language restrictions. Two review authors independently screened search results, disagreements were solved by discussion. Selection criteria We included randomised controlled trials (RCTs) comparing an aerobic physical exercise intervention, intending to improve the oxygen system, in addition to standard care with standard care only for adults suffering from haematological malignancies. We also included studies that evaluated aerobic exercise in addition to strength training. We excluded studies that investigated the effect of training programmes that were composed of yoga, tai chi chuan, qigong or similar types of exercise. We also excluded studies exploring the influence of strength training without additive aerobic exercise as well as studies assessing outcomes without any clinical impact. Data collection and analysis Two review authors independently screened search results, extracted data and assessed the quality of trials. We used risk ratios (RRs) for adverse events, mortality and 100-day survival, standardised mean differences (SMD) for quality of life (QoL), fatigue, and physical performance, and mean differences (MD) for anthropometric measurements. Main results In this update, nine trials could be added to the nine trials of the first version of the review, thus we included eighteen RCTs involving 1892 participants. Two of these studies (65 participants) did not provide data for our key outcomes (they analysed laboratory values only) and one study (40 patients) could not be included in the meta-analyses, as results were presented as changes scores only and not as endpoint scores. One trial (17 patients) did not report standard errors and could also not be included in meta-analyses. The overall potential risk of bias in the included trials is unclear, due to poor reporting. The majority of participants suffered from acute lymphoblastic leukaemia (ALL), acutemyeloid leukaemia (AML), malignant lymphoma and multiple myeloma, and eight trials randomised people receiving stem cell transplantation. Mostly, the exercise intervention consisted of various walking intervention programmes with different duration and intensity levels. Our primary endpoint overall survival (OS) was only reported in one of these studies. The study authors found no evidence for a difference between both arms (RR = 0.67; P = 0.112). Six trials (one trial with four arms, analysed as two sub-studies) reported numbers of deceased participants during the course of the study or during the first 100 to 180 days. For the outcome mortality, there is no evidence for a difference between participants exercising and those in the control group (RR 1.10; 95% CI 0.79 to 1.52; P = 0.59; 1172 participants, low-certainty evidence). For the following outcomes, higher numbers indicate better outcomes, with 1 being the best result for the standardised mean differences. Eight studies analysed the influence of exercise intervention on QoL. It remains unclear, whether physical exercise improves QoL (SMD 0.11; 95% CI -0.03 to 0.24; 1259 participants, low-certainty evidence). There is also no evidence for a difference for the subscales physical functioning (SMD 0.15; 95% CI -0.01 to 0.32; 8 trials, 1329 participants, low-certainty evidence) and anxiety (SMD 0.03; 95% CI -0.30 to 0.36; 6 trials, 445 participants, very low-certainty evidence). Depression might slightly be improved by exercising (SMD 0.19; 95% CI 0.0 to 0.38; 6 trials, 445 participants, low-certainty evidence). There is moderate-certainty evidence that exercise probably improves fatigue (SMD 0.31; 95% CI 0.13 to 0.48; 9 trials, 826 patients). Six trials (435 participants) investigated serious adverse events. We are very uncertain, whether additional exercise leads to more serious adverse events (RR 1.39; 95% CI 0.94 to 2.06), based on very low-certainty evidence. In addition, we are aware of four ongoing trials. However, none of these trials stated, how many patients they will recruit and when the studies will be completed, thus, potential influence of these trials for the current analyses remains unclear. Authors' conclusions Eighteen, mostly small RCTs did not identify evidence for a difference in terms of mortality. Physical exercise added to standard care might improve fatigue and depression. Currently, there is inconclusive evidence regarding QoL, physical functioning, anxiety and SAEs. We need further trials with more participants and longer follow-up periods to evaluate the effects of exercise intervention for people suffering from haematological malignancies. To enhance comparability of study data, development and implementation of core sets of measuring devices would be helpful

    Aerobic physical exercise for adult patients with haematological malignancies

    No full text
    Background Although people with haematological malignancies have to endure long phases of therapy and immobility which is known to diminish their physical performance level, the advice to rest and avoid intensive exercises is still common practice. This recommendation is partly due to the severe anaemia and thrombocytopenia from which many patients suffer. The inability to perform activities of daily living restricts them, diminishes their quality of life and can influence medical therapy. Objectives To evaluate the efficacy, safety and feasibility of aerobic physical exercise for adults suffering from haematological malignancies. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2014, Issue 1) and MEDLINE (1950 to January 2014) as well as conference proceedings for randomised controlled trials (RCTs). Selection criteria We included RCTs comparing an aerobic physical exercise intervention, intending to improve the oxygen system, in addition to standard care with standard care only for adults suffering from haematological malignancies. We also included studies that evaluated aerobic exercise in addition to strength training. We excluded studies that investigated the effect of training programmes that were composed of yoga, tai chi chuan, qigong or similar types of exercise. We also excluded studies exploring the influence of strength training without additive aerobic exercise. Additionally, we excluded studies assessing outcomes without any clinical impact. Data collection and analysis Two review authors independently screened search results, extracted data and assessed the quality of trials. We used risk ratios (RRs) for adverse events and 100-day survival, standardised mean differences for quality of life (QoL), fatigue, and physical performance, and mean differences for anthropometric measurements. Main results Our search strategies identified 1518 potentially relevant references. Of these, we included nine RCTs involving 818 participants. The potential risk of bias in these trials is unclear, due to poor reporting. The majority of participants suffered fromacute lymphoblastic leukaemia (ALL), acutemyeloid leukaemia (AML), malignant lymphoma and multiple myeloma, and six trials randomised people receiving stem cell transplantation. Mostly, the exercise intervention consisted of various walking intervention programmes with different duration and intensity levels. Our primary endpoint of overall survival (OS) was not analysed in any of the included trials, but three trials reported deceased participants during the course of the study or during the first 100 days. There is no evidence for a difference between participants exercising and those in the control group (RR 0.93; 95% CI 0.59 to 1.47; P = 0.75; 3 trials, 269 participants, moderate quality of evidence). Four trials analysed the influence of exercise intervention on quality of life (QoL). Excluding one trial with serious baseline imbalances, physical exercise improves QoL (SMD 0.26; 95% CI 0.03 to 0.49; P = 0.03; 3 trials, 291 participants, low quality of evidence). This positive effect of exercise was also found in the subscales physical functioning (SMD 0.33; 95% CI 0.13 to 0.52; P = 0.0009; 4 trials, 422 participants, moderate quality of evidence) and depression (SMD 0.25; 95% CI -0.00 to 0.50; P = 0.05; 3 trials, 249 participants, low quality of evidence). However, there is no evidence for a difference between additional exercise and standard treatment for the subscale anxiety (SMD -0.18; 95% CI -0.64 to 0.28; P = 0.45; 3 trials, 249 participants, low quality of evidence). Seven trials (692 participants) evaluated fatigue. There is moderate quality of evidence that exercise improves fatigue (SMD 0.24; 95% CI 0.08 to 0.40; P = 0.003). Eight studies evaluated various aspects of physical performance (e. g. aerobic capacity, cardiovascular fitness), but none of them could be pooled in a meta-analysis. In seven trials there is a tendency or statistically significant effect favouring the exercise group (very low quality of evidence). Three trials (266 participants) investigated serious adverse events (SAEs) (e. g. bleeding, fever, pneumonia, deep vein thrombosis, and infection), and one trial (122 participants) assessed adverse events (AEs). There is no evidence for a difference between arms in terms of SAEs (RR 1.44; 95% CI 0.96 to 2.18; P = 0.06) or AEs (RR 7.23; 95% CI 0.38 to 137.05; P = 0.19); both findings are based on low quality of evidence. Authors' conclusions There is no evidence for differences in mortality between the exercise and control groups. Physical exercise added to standard care can improve quality of life, especially physical functioning, depression and fatigue. Currently, there is inconclusive evidence regarding anxiety, physical performance, serious adverse events and adverse events. We need further trials with more participants and longer follow-up periods to evaluate the effects of exercise intervention for people suffering from haematological malignancies. Furthermore, we need trials with overall survival as the primary outcome to determine whether the suggested benefits will translate into a survival advantage. To enhance comparability of study data, development and implementation of core sets of measuring devices would be helpful

    Transfer of the Epoxidation of Soybean Oil from Batch to Flow Chemistry Guided by Cost and Environmental Issues

    No full text
    The simple transfer of established chemical production processes from batch to flow chemistry does not automatically result in more sustainable ones. Detailed process understanding and the motivation to scrutinize known process conditions are necessary factors for success. Although the focus is usually “only” on intensifying transport phenomena to operate under intrinsic kinetics, there is also a large intensification potential in chemistry under harsh conditions and in the specific design of flow processes. Such an understanding and proposed processes are required at an early stage of process design because decisions on the best-suited tools and parameters required to convert green engineering concepts into practice—typically with little chance of substantial changes later—are made during this period. Herein, we present a holistic and interdisciplinary process design approach that combines the concept of novel process windows with process modeling, simulation, and simplified cost and lifecycle assessment for the deliberate development of a cost-competitive and environmentally sustainable alternative to an existing production process for epoxidized soybean oil
    corecore