21 research outputs found

    A Trainable Hearing Aid Algorithm Reflecting Individual Preferences for Degree of Noise-Suppression, Input Sound Level, and Listening Situation

    Get PDF
    Objectives In an effort to improve hearing aid users’ satisfaction, recent studies on trainable hearing aids have attempted to implement one or two environmental factors into training. However, it would be more beneficial to train the device based on the owner’s personal preferences in a more expanded environmental acoustic conditions. Our study aimed at developing a trainable hearing aid algorithm that can reflect the user’s individual preferences in a more extensive environmental acoustic conditions (ambient sound level, listening situation, and degree of noise suppression) and evaluated the perceptual benefit of the proposed algorithm. Methods Ten normal hearing subjects participated in this study. Each subjects trained the algorithm to their personal preference and the trained data was used to record test sounds in three different settings to be utilized to evaluate the perceptual benefit of the proposed algorithm by performing the Comparison Mean Opinion Score test. Results Statistical analysis revealed that of the 10 subjects, four showed significant differences in amplification constant settings between the noise-only and speech-in-noise situation (P<0.05) and one subject also showed significant difference between the speech-only and speech-in-noise situation (P<0.05). Additionally, every subject preferred different β settings for beamforming in all different input sound levels. Conclusion The positive findings from this study suggested that the proposed algorithm has potential to improve hearing aid users’ personal satisfaction under various ambient situations

    The first generation of a BAC-based physical map of Brassica rapa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Brassica </it>includes the most extensively cultivated vegetable crops worldwide. Investigation of the <it>Brassica </it>genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the <it>B. rapa </it>genome is a fundamental tool for analysis of <it>Brassica </it>"A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences.</p> <p>Results</p> <p>A genome-wide physical map of the <it>B. rapa </it>genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing.</p> <p>Conclusion</p> <p>The map reported here is the first physical map for <it>Brassica </it>"A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between <it>Brassica </it>genomes. The current build of the <it>B. rapa </it>physical map is available at the <it>B. rapa </it>Genome Project website for the user community.</p

    Reduction of Zygomatic Fractures Using the Carroll-Girard T-bar Screw

    No full text
    Zygomatic fractures are the second most common facial bone fractures encountered and treated by plastic surgeons. Stable fixation of fractured fragments after adequate exposure is critical for ensuring three-dimensional anatomic reduction. Between January 2008 and December 2010, 17 patients with zygomatic fractures were admitted to our hospital; there were 15 male and 2 female patients. The average age of the patients was 41 years (range, 19 to 75 years). We exposed the inferior orbital rim and zygomatic complex through a lateral brow, intraoral, and subciliary incisions, which allowed for visualization of the bone, and then the fractured parts were corrected using the Carroll-Girard T-bar screw. Postoperative complications such as malar asymmetry, diplopia, enophthalmos, and postoperative infection were not observed. Lower eyelid retraction and temporary ectropion occurred in 1 of the 17 patients. Functional and cosmetic results were excellent in nearly all of the cases. In this report, we describe using the Carroll-Girard T-bar screw for the reduction of zygomatic fractures. Because this instrument is easy to use and can rotate to any direction and vector, it can be used to correct displaced zygomatic bone more accurately and safely than other devices, without leaving facial scars

    MAP: Mutation Arranger for Defining Phenotype-Related Single-Nucleotide Variant

    No full text
    Next-generation sequencing (NGS) is widely used to identify the causative mutations underlying diverse human diseases, including cancers, which can be useful for discovering the diagnostic and therapeutic targets. Currently, a number of single-nucleotide variant (SNV)-calling algorithms are available; however, there is no tool for visualizing the recurrent and phenotype-specific mutations for general researchers. In this study, in order to support defining the recurrent mutations or phenotype-specific mutations from NGS data of a group of cancers with diverse phenotypes, we aimed to develop a user-friendly tool, named mutation arranger for defining phenotype-related SNV (MAP). MAP is a user-friendly program with multiple functions that supports the determination of recurrent or phenotype-specific mutations and provides graphic illustration images to the users. Its operation environment, the Microsoft Windows environment, enables more researchers who cannot operate Linux to define clinically meaningful mutations with NGS data from cancer cohorts

    Identification of Naturally Processed Epitope Region Using Artificial APC Expressing a Single HLA Class I Allotype and mRNA of HCMV pp65 Antigen Fragments

    No full text
    Recently, long synthetic peptides or in silico-predicted epitope peptides have been used to identify T cell epitopes, but these approaches may not be suitable for investigating naturally processed epitopes. Here, mRNAs, including fragments or predicted epitope sequences of HCMV pp65 antigen, were generated by in vitro transcription following transcriptionally active PCR. Then, artificial antigen-presenting cells (aAPCs) expressing a single HLA allotype were transfected with mRNAs to identify epitopes in donors with T cell responses that recognize pp65 antigen restricted to HLA-A*02:01, -A*02:06, or -B*07:02. T cells restricted to a particular HLA allotype showed positive responses in some of the 10 fragment antigens. Among predicted epitopes within these positive fragments, three epitopes of HLA-A*02:01, -A*02:06, and -B*07:02 were confirmed. In addition, T cells expanded by anti-CD3 stimulation for two weeks could also be effectively used for the identification of these T cell epitopes, although there were individual differences. These results demonstrated that fragment antigens and epitopes can be rapidly generated using mRNA, and naturally processed antigenic regions can be detected using aAPCs without a T cell cloning procedure. This method will help to identify novel T cell epitopes for developing immunotherapy and vaccines against infectious diseases and cancer

    Human Body Tracking and Pose Estimation Using Modified Camshift Algorithm

    No full text
    In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that ex-tracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algo-rithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82 % accuracy even in the case of occlusions
    corecore