2 research outputs found

    Fracture Resistance of Simulated Immature Teeth Reinforced with Different Mineral Aggregate-Based Materials

    Full text link
    This study assessed the fracture resistance of simulated immature teeth reinforced with calcium aluminate cement (CAC) or mineral trioxide aggregate (MTA) containing calcium carbonate nanoparticles (nano-CaCO3). The microstructural arrangement of the cements and their chemical constitution were also evaluated. Forty-eight canines simulating immature teeth were distributed into 6 groups (n=8): Negative control - no apical plug or root canal filling; CAC - apical plug with CAC; CAC/nano-CaCO3 - apical plug with CAC+5% nano-CaCO3; MTA - apical plug with MTA; MTA/nano-CaCO3 - apical plug with MTA+5% nano-CaCO3; and Positive control - root canal filling with MTA. The fracture resistance was evaluated in a universal testing machine. Samples of the cements were analyzed under Scanning Electron Microscope (SEM) to determine their microstructural arrangement. Chemical analysis of the cements was performed by Energy Dispersive X-ray Spectroscopy (EDS). The fracture resistance of CAC/nano-CaCO3 was significantly higher than the negative control (p0.05). Both cements had a more regular microstructure with the addition of nano-CaCO3. MTA samples had more calcium available in soluble forms than CAC. The addition of nano-CaCO3 to CAC increased the fracture resistance of teeth in comparison with the non-reinforced teeth. The microstructure of both cements containing nano-CaCO3 was similar, with a more homogeneous distribution of lamellar- and prismatic-shaped crystals. MTA had more calcium available in soluble forms than CAC.Este estudo avaliou a resistência à fratura de dentes imaturos simulados reforçados com cimento de aluminato de cálcio (CAC) ou trióxido agregado mineral (MTA) contendo nanopartículas de carbonato de cálcio (nano-CaCO3). O arranjo microestrutural dos cimentos e sua constituição química também foram avaliados. Quarenta e oito caninos simulando dentes imaturos foram distribuídos em 6 grupos (n=8): Controle negativo - sem plug apical ou obturação do canal radicular; CAC - plug apical com CAC; CAC/nano-CaCO3 - plug apical com CAC + 5% nano-CaCO3; MTA - plug apical com MTA; MTA/nano-CaCO3 - plug apical com MTA + 5% nano-CaCO3; e Controle positivo - obturação dos canais radiculares com MTA. A resistência à fratura foi avaliada em máquina universal de ensaios. Amostras dos cimentos foram analisadas em Microscópio Eletrônico de Varredura (MEV) para determinar seu arranjo microestrutural. A análise química dos cimentos foi realizada por Espectroscopia de Energia Dispersiva de Raio-X (EDS). A resistência à fratura de CAC/nano-CaCO3 foi significativamente maior do que o controle negativo (p0,05). Ambos os cimentos apresentaram microestrutura mais regular com a adição de nano-CaCO3. As amostras de MTA apresentaram mais cálcio disponível em formas solúveis do que CAC. A adição de nano-CaCO3 ao CAC aumentou a resistência à fratura dos dentes em comparação aos dentes não reforçados. A microestrutura de ambos os cimentos contendo nano-CaCO3 foi semelhante, com uma distribuição mais homogênea de cristais de formato lamelar e prismático. MTA apresentou mais cálcio disponível nas formas solúveis do que CAC
    corecore