3 research outputs found
Nephroprotective effects of synthetic flavonoid hidrosmin in experimental diabetic nephropathy
Diabetes mellitus (DM) is a high‐impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid hidrosmin (5‐O‐(beta-hydroxyethyl) diosmin) in experimental DN induced by streptozotocin injection in apolipoprotein E deficient mice. Oral administration of hidrosmin (300 mg/kg/day, n = 11) to diabetic mice for 7 weeks markedly reduced albuminuria (albumin‐to‐creatinine ratio: 47 ± 11% vs. control) and ameliorated renal pathological damage and expression of kidney injury markers. Kidneys of hidrosmin‐treated mice exhibited lower content of macrophages and T cells, reduced expression of cytokines and chemokines, and attenuated inflammatory signaling pathways. Hidrosmin treatment improved the redox balance by reducing prooxidant enzymes and enhancing antioxidant genes, and also decreased senescence markers in diabetic kidneys. In vitro, hidrosmin dose‐dependently reduced the expression of inflammatory and oxidative genes in tubuloepithelial cells exposed to either high‐glucose or cytokines, with no evidence of cytotoxicity at effective concentrations. In conclusion, the synthetic flavonoid hidrosmin exerts a beneficial effect against DN by reducing inflammation, oxidative stress, and senescence pathways. Hidrosmin could have a potential role as a coadjutant therapy for the chronic complications of DM.This work was supported by grants from the Spanish Ministry of Science and Innovation-
FEDER funds (Retos Colaboración RTC2017-6089-1 and Retos Investigación RTI2018-098788-B-I00)
and Instituto de Salud Carlos III (PI20/00487 and DTS 19/00093
Benzylamine and Thenylamine Derived Drugs Induce Apoptosis and Reduce Proliferation, Migration and Metastasis Formation in Melanoma Cells
Melanomas are heterogeneous and aggressive tumors, and one of the worse in prognosis. Melanoma subtypes follow distinct pathways until terminal oncogenic transformation. Here, we have evaluated a series of molecules that exhibit potent cytotoxic effects over the murine and human melanoma cell lines B16F10 and MalMe-3M, respectively, both ex vivo and in animals carrying these melanoma cells. Ex vivo mechanistic studies on molecular targets involved in melanoma growth, migration and viability were evaluated in cultured cells treated with these drugs which exhibited potent proapoptotic and cytotoxic effects and reduced cell migration. These drugs altered the Wnt/β-catenin pathway, which is important for the oncogenic phenotype of melanoma cells. In in vivo experiments, male C57BL/6 or nude mice were injected with melanoma cells that rapidly expanded in these animals and, in some cases were able to form metastasis in lungs. Treatment with anti-tumor drugs derived from benzylamine and 2-thiophenemethylamine (F10503LO1 and related compounds) significantly attenuated tumor growth, impaired cell migration, and reduced the metastatic activity. Several protocols of administration were applied, all of them leading to significant reduction in the tumor size and enhanced animal survival. Tumor cells carrying a luciferase transgene allowed a time-dependent study on the progression of the tumor. Molecular analysis of the pathways modified by F10503LO1 and related compounds defined the main relevant targets for tumor regression: the activation of pro-apoptotic and anti-proliferative routes. These data might provide the proof-of-principle and rationale for its further clinical evaluation
The Synthetic Flavonoid Hidrosmin Improves Endothelial Dysfunction and Atherosclerotic Lesions in Diabetic Mice
In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes