405 research outputs found

    Cyclo­hexane-1,2-diammonium bis­(pyridine-2-carboxyl­ate)

    Get PDF
    In the dication of the title salt, C6H16N2 2+·2C6H4NO2 −, the two ammonium groups are in the equatorial positions of the chair-shaped cyclo­hexyl ring. In the crystal, the cations and anions are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a layer network parallel to the ac plane. Weak π–π inter­actions between adjacent pyridine rings with a centroid–centroid distance of 3.589 (2) Å are also present

    Bis(2,2′-bipyridine-κ2 N,N′)dichlorido­platinum(IV) dichloride monohydrate

    Get PDF
    In the title complex, [PtCl2(C10H8N2)2]Cl2·H2O, the Pt4+ ion is six-coordinated in a distorted octa­hedral environment by four N atoms from the two 2,2′-bipyridine ligands and two Cl atoms. As a result of the different trans influences of the N and Cl atoms, the Pt—N bonds trans to the Cl atom are slightly longer than those trans to the N atom. The compound displays inter­molecular hydrogen bonding between the water mol­ecule and the Cl anions. There are inter­molecular π–π inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.962 Å

    catena-Poly[hemi(hexane-1,6-diammonium) [[aqua­dibromido­manganese(II)]-μ-pyridine-2-carboxyl­ato]]

    Get PDF
    The asymmetric unit of the title compound, {(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]}n, contains the repeat unit of the complex anion and one-half of a hexane-1,6-diammonium cation that is located on a twofold rotation axis. In the anionic polymer, the Mn2+ ions are bridged by the pyridine­carboxyl­ate (pic) anion ligand, forming a chain structure along the c axis. The Mn2+ ion is six-coordinated in a distorted octa­hedral environment by one N atom of the pyridine ring, two O atoms of the two carboxyl­ate groups, one O atom of the water mol­ecule and two Br atoms. The compound displays inter­molecular N—H⋯O, N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonding. There may also be inter­molecular π–π inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.992 (4) Å

    Tetra­chlorido(1,10-phenanthroline-κ2 N,N′)platinum(IV) monohydrate

    Get PDF
    In the title complex, [PtCl4(C12H8N2)]·H2O, the Pt4+ ion is six-coordinated in a distorted octa­hedral environment by two N atoms of a 1,10-phenanthroline ligand and by four Cl atoms. As a result of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are slightly shorter than those trans to the Cl atom. The compound displays inter­molecular π–π inter­actions between the six-membered rings, with a centroid–centroid distance of 3.834 Å. There are also weak intra­molecular C—H⋯Cl hydrogen bonds. According to the IR spectrum, solvent water was present in the crystal, but owing to the high thermal motion of the uncoordinated O atom, the H atoms could not be detected

    Tetra­chlorido(1,10-phenanthroline-κ2 N,N′)platinum(IV) acetonitrile hemisolvate

    Get PDF
    The asymmetric unit of the title compound, [PtCl4(C12H8N2)]·0.5CH3CN, contains two crystallographically independent PtIV complexes with very similar geometry and one solvent mol­ecule. In the complexes, each PtIV ion is six-coordinated in a distorted octa­hedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. Because of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are slightly shorter than those trans to the Cl atom. The compound displays numerous inter­molecular π–π inter­actions between six-membered rings, with a shortest centroid-to-centroid distance of 3.654 Å. There are also weak intra- and inter­molecular C—H⋯Cl hydrogen bonds

    Acupuncture for Spinal Cord Injury and Its Complications: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    To evaluate the evidence supporting the effectiveness of acupuncture treatment for SCI and its complications, we conducted search across 19 electronic databases to find all of the randomized controlled trials (RCTs) that used acupuncture as a treatment for SCI and its complications. The methodological quality of each RCT was assessed using the Cochrane risk of bias tool and the PEDro scale. Sixteen RCTs, including 2 high-quality RCTs, met our inclusion criteria (8 for functional recovery from SCI, 6 for bladder dysfunction, and 2 for pain control). The meta-analysis showed positive results for the use of acupuncture combined with conventional treatments for the functional recovery in terms of motor ASIA scores and total FIM scores when compared to conventional treatments alone. Positive results were also obtained for the treatment of bladder dysfunction, in terms of the total efficacy rate, when comparing acupuncture to conventional treatments. However, 2 RCTs for pain control reported conflicting results. Our systematic review found encouraging albeit limited evidence for functional recovery, bladder dysfunction, and pain in SCI. However, to obtain stronger evidence without the drawbacks of trial design and the quality of studies, we recommend sham-controlled RCTs or comparative effectiveness research for each condition to test the effectiveness of acupuncture
    corecore