2 research outputs found
Implication of sulfonylurea derivatives as prospective inhibitors of human carbonic anhydrase II
Selective carbonic anhydrase (CA) inhibitors have gained a lot of importance owing to the implication of specific isoforms of CA in certain diseases like glaucoma, leukemia, cystic fibrosis, and epilepsy. A novel class of sulfonylurea derivatives was synthesized from corresponding sulfonyl chlorides and amines. Compounds with different pendant moieties in the sulfonylurea derivatives show significant interactions with human carbonic anhydrase II (CAII). In vitro evaluation of the sulfonylurea derivatives revealed that three compounds possess admirable inhibitory activity against CAII. Compounds containing methyl (G2), isopropyl (G4) and o-tosyl (G5) groups displayed IC50 (109-137 μm) for CAII. Fluorescence binding and cytotoxicity studies revealed that these compounds are showing good binding affinity (18-34 μM) to CAII and non- toxic to human cells. Further, molecular docking studies of G2, G4 and G5 with CAII showed that these compounds fit nicely in the active site of CAII. Molecular dynamics simulation studies of these compounds complexed with CAII showed that essential interactions were maintained up to 50 ns of simulation. These results indicate the promising nature of the sulfonylurea scaffold towards CAII inhibition and opens scope of hit to-lead optimization for discovery of effective drugs against CAII-associated disorders.by Danish Idrees, Murtuza Hadianawala, Amarjyoti Das Mahapatra, Bhaskar Datta, Sonam Roy, Shahzaib Ahamad, Parvez Khan and Md.Imtiyaz Hassa
Clinical implications of cytosine deletion of exon 5 of P53 gene in non small cell lung cancer patients
Aim: Lung cancer is considered to be the most common cancer in the world. In humans, about 50% or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate the cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Our study was aimed to evaluate the frequency of cytosine deletion in nonsmall cell lung cancer (NSCLC) patients. Methods: One hundred NSCLC patients were genotyped for P53 (exon5, codon168) cytosine deletion leading to loss of its function and activate the target genes by allele-specific polymerase chain reaction. The P53 cytosine deletion was correlated with all the clinicopathological parameters of the patients. Results and Analysis: 59% cases were carrying P53 cytosine deletion. Similarly, the significantly higher incidence of cytosine deletion was reported in current smokers (75%) in comparison to exsmoker and nonsmoker. Significantly higher frequency of cytosine deletion was reported in adenocarcinoma (68.08%) than squamous cell carcinoma (52.83%). Also, a significant difference was reported between p53 cytosine deletion and metastasis (64.28%). Further, the majority of the cases assessed for response carrying P53 cytosine deletion were found to show faster disease progression. Conclusion: The data suggests that there is a significant association of the P53 exon 5 deletion of cytosine in codon 168 with metastasis and staging of the disease